4.3 Coding a Sequence 87

TABLE 4.3 Toss for outcomes in a
dice-throwing experment.

Outcome Tag
1 0.0833
3 0.4166
4 0.5833
6 9166
0.9166 ¢

As we can see from the example above, giving a unique tag to a sequence of length one
is an easy task. This approach can be extended to longer sequences by imposing an order
on the sequences. We need an ordering on the sequences because we will assign a tag to a
particular sequence Xx; as

7(6) = ¥ PO+ 5 P(5) (4.4)
¥y<x;
where y < x means that y precedes x in the ordering, and the superscript denotes the length
of the sequence.

An easy ordering to use is lexicographic ordering. In lexicographic ordering, the ordering
of letters in an alphabet induces an ordering on the words constructed from this alphabet. The
ordering of words in a dictionary is a good (maybe the original) example of lexicographic
ordering. Dictionary order is sometimes used as a synonym for lexicographic order.

Example 4.3.3:

We can extend Example 4.3.1 so that the sequence consists of two rolls of a die. Using the
ordering scheme described above, the outcomes (in order) would be 11 12 13 ... 66. The
tags can then be generated using Equation (4.4). For example, the tag for the sequence 13
would be

Ty(13) = P(x=11)+P(x = 12) + 1/2P(x = 13) (4.5)
= 1/36+41/36+1/2(1/36) (4.6)

= 5/72. (4.7)

¢

Notice that to generate the tag for 13 we did not have to generate a tag for every other
possible message. However, based on Equation (4.4) and Example 4.3.3, we need to know
the probability of every sequence that is “less than” the sequence for which the tag is being
generated. The requirement that the probability of all sequences of a given length be explicitly
calculated can be as prohibitive as the requirement that we have codewords for all sequences
of a given length. Fortunately, we shall see that to compute a tag for a given sequence of
symbols, all we need is the probability of individual symbols, or the probability model.

88 4 ARITHMETIC CODING

Recall that, given our construction, the interval containing the tag value for a given
sequence is disjoint from the intervals containing the tag values of all other sequences. This
means that any value in this interval would be a unique identifier for x,. Therefore, to fulfill
our initial objective of uniquely identifying each sequence, it would be sufficient to compute
the upper and lower limits of the interval containing the tag and select any value in that
interval. The upper and lower limits can be computed recursively as shown in the following
example.

Example 4.3.4:

We will use the alphabet of Example 4.3.2 and find the upper and lower limits of the
interval containing the tag for the sequence 322. Assume that we are observing 32 2 in a
sequential manner; that is, first we see 3, then 2, and then 2 again. After each observation we
will compute the upper and lower limits of the interval containing the tag of the sequence
observed to that point. We will denote the upper limit by «“" and the lower limit by '),
where n denotes the length of the sequence.

We first observe 3. Therefore,

W= F(3). 1 = Fy(2).
We then observe 2 and the sequence is x = 32. Therefore,
W =FP(32), 1Y =F 3.
We can compute these values as follows:
FP(32) = P(x=11)+P(x=12)+ -+ P(x = 16)
+P(x=21)+P(x=22)+ .-+ P(x =26)
+ P(x = 31) + P(x = 32).

It

But,

i=6 i=6-
Y P(x=ki)=) P(x; =k x,=1i)=P(x; =k)
i=1

i=1

where x = x,x,. Therefore,

FO'(32) = Py, = 1)+ P(x; =2) + P(x = 31) + P(x = 32)
= Fy(2)+ P(x =31)+ P(x = 32).

However, assuming each roll of the dice is independent of the others,
P(x=131)=P(x, =3)P(x, = 1)

and

4.3 Coding a Sequence 89

Therefore,

P(x =31)+P(x =32) = P(x, = 3)(P(x, = 1)+ P(x, = 2))
P(x, = 3)F4(2).

Noting that
P(x, =3) = Fy(3) — Fx(2)
we can write
P(x =31) + P(x = 32) = (Fy(3) — Fx(2))Fx(2)
and
FP(32) = Fy(2) + (Fy(3) — Fx(2))Fy(2).
We can also write this as
u® =10 + (V) —IDYF(2).
We can similarly show that
F' (1) = Fx(2) + (Fy(3) = Fx(2)) Fy (1)
or
19 = 1 4 (@ = (V) Fy (1),

The third element of the observed sequence is 2, and the sequence is X = 322. The upper
and lower limits of the interval containing the tag for this sequence are

W =FP(322), 1Y =F(321),
Using the same approach as above we find that
FP(322) = FP G +(FY'(32) — FY (31)) Fy(2) (4.8)
F'(321) = BB+ (FY(32) = Fy' (31)Fy (1)
or

u? =14 (P — 1P F(2)
19 = 12 4 (! = 1) Ey(1). ¢

In general, we can show that for any sequence X = (x,x,...x,)

1 =1 @ = Y Fy(x, = 1) (4.9)
W = 1" D =1 F(x,). (4.10)

90 4q ARITHMETIC CODING

Notice that throughout this process we did not explicitly need to compute any joint
probabilities.
If we are using the midpoint of the interval for the tag, then

u(n) +[lnl
—
Therefore, the tag for any sequence can be computed in a sequential fashion. The only

information required by the tag generation procedure is the cdf of the source, which can be
obtained directly from the probability rmodel.

Tx (x) =

Example 4.3.5: Generating a tag

Consider the source in Example 3.2.4. Define the random variable X(a,) = i. Suppose we
wish to encode the sequence 1 3 2 1. From the probability model we know that

Fe(k)=0, k<0, Fy(1)=08, Fy2)=0.82, F,3)=1, Fy(k)=1. k>3.

We can use Equations (4.9) and (4.10) sequentially to determine the lower and upper limits
of the interval containing the tag. Initializing «'” to 1, and /'Y’ to 0, the first element of the
sequence 1 results in the following update:

M =04+(1-00=0
u' = 04 (1-0)(0.8)=0.8.

That is, the tag is contained in the interval [0, 0.8). The second element of the sequence is 3.
Using the update equations we get

¥ = 0+4(0.8~0)Fy(2) = 0.8 x 0.82 = 0.656
u? = 0+(0.8—0)Fy(3)=0.8x1.0=0.8.

Therefore, the interval containing the tag for the sequence 13 is [0.656,0.8). The third
element, 2, results in the following update equations:

I = 0.656+ (0.8 — 0.656)Fy (1) = 0.656+0.144 x 0.8 = 0.7712
4 = 0.656+ (0.8 — 0.656)Fy (2) = 0.656 +0.144 x 0.82 = 0.77408

and the interval for the tag is [0.7712, 0.77408). Continuing with the last element, the upper
and lower limits of the interval containing the tag are

I = 0.7712 +(0.77408 — 0.7712) F ¢ (0) = 0.7712 4+ 0.00288 x 0.0 = 0.7712
u® = 0.7712 +(0.77408 — 0.1152) F (1) = 0.7712 +0.00288 x 0.8 = 0.773504

and the tag for the sequence 1 3 2 1 can be generated as

_ 0.7712 4 0.773504 i
T,(1321) = =10.772352

2 ‘ ¢

4.3 Coding a Sequence 91

Notice that each succeeding interval is contained in the preceding interval. If we examine
the equations used to generate the intervals, we see that this will always be the case. This
property will be used to decipher the tag. An undesirable consequence of this process is
that the intervals get smaller and smaller and require higher precision as the sequence gets
longer. To combat this problem, a rescaling strategy needs to be adopted. In Section 4.4.2,
we will describe a simple rescaling approach that takes care of this problem.

4.3.2 Deciphering the Tag

We have spent a considerable amount of time showing how a sequence can be assigned a
unique tag, given a minimal amount of information. However, the tag is useless unless we
can also decipher it with minimal computational cost. Fortunately, deciphering the tag is as
simple as generating it. We can see this most easily through an example.

Example 4.3.6: Deciphering a tag

Given the tag obtained in Example 4.3.5, let's try to obtain the sequence represented by
the tag. We will try to mimic the encoder in order to do the decoding. The tag value is
0.772352. The interval containing this tag value is a subset of every interval obtained in the
encoding process. Our decoding strategy will be to decode the elements in the sequence in
such a way that the upper and lower limits «'* and [will always contain the tag value for
each k. We start with [=0 and u'® = 1. After decoding the first element of the sequence
x,, the upper and lower limits become

1M = 0+ (1=0)Fx(x, = 1) = Fy(x; = 1)
UM = 04 (1 —0)Fy(x,) = Fy(x)).

In other words, the interval containing the tag is [Fy(x; — 1), Fx(x,)). We need to find the
value of x, for which 0.772352 lies in the interval [Fy(x; — 1), Fy(x,)). If we pick x;, =1,
the interval is [0, 0.8). If we pick x, = 2, the interval is [0.8,0.82), and if we pick x; =3,
the interval is [0.82, 1.0). As 0.772352 lies in the interval [0.0, 0.8}, we choose x; = 1. We
now repeat this procedure for the second element x,. using the updated values of /' and
u'h:

D = 0+ (0.8—0)Fy(xs—1)=08F(x,—1)
u® = 04 (0.8 —0)Fy(x,) =0.8F(x,).

If we pick x, = 1, the updated interval is [0, 0.64), which does not contain the tag. Therefore,
x, cannot be 1. If we pick x, = 2, the updated interval is {0.64, 0.656), which also does not
contain the tag. If we pick x, = 3, the updated interval is [0.656, 0.8), which does contain
the tag value of 0.772352. Therefore, the second element in the sequence is 3. Knowing
the second element of the sequence, we can update the values of 1 and u® and find the
element x,, which will give us an interval containing the tag:

I = 0.656 4 (0.8 = 0.656) Fy(x; — 1) = 0.656 +-0.144 x Fy(x; — 1)
U = 0.656+ (0.8 — 0.656)Fy(x3) = 0.656 +0.144 x Fy(x).

92 4 ARITHMETIC CODING

However, the expressions for /") and 4'* are cumbersome in this form. To make the
comparisons more easily. we could subtract the value of /**! from both the limits and the tag.
That is, we find the value of x; for which the interval [0.144 x Fy(x;~1),0.144 x Fy(xy))
contains 0.772352 — (0.656 = 0.116352. Or. we could make this even simpler and divide the
residual tag value of 0.116352 by 0.144 to get 0.808. and find the value of X, for which
0.808 falls in the interval [Fy(x; —1). Fy(x;)). We can see that the only value of x; for
which this is possible is 2. Substituting 2 for x, in the update equations, we can update the
values of /' and «'". We can now find the element x, by computing the upper and lower
limits as

" = 07712+ (0.77408 — 0.7712) Fy, (x; — 1) = 0.7712 4 0.00288 x Fy(x,—1)
Ut = 0.77124(0.77408 - 0.1152) F, (x;) = 0.7712 + 0.00288 x Fy(x,).

Again we can subtract /'Y from the tag to get 0.772352 —0.7712 = 0.001152 and find
the value of x, for which the interval [0.00288 x Fy(x, — 1). 0.00288 x Fy(x,)) contains
0.001152. To make the comparisons simpler., we can divide the residual value of the tag by
0.00288 to get 0.4, and find the value of x, for which 0.4 is contained in [Fe(x, = 1), Fy(xy)).
We can see that the value is x; = 1. and we have decoded the entire sequence. Note that we
knew the length of the sequence beforehand and. therefore. we knew when to stop. ¢

From the example above, we can deduce an algorithm that can decipher the tag.
1. Initialize /' =0 and 4" = 1.
2. Foreach & find t* = (tag — [%=") /(u*= 1) — [h-11y,
3. Find the value of x; for which Fy(x, — 1) <1 < F(x,).
4. Update '™ and IV,
5. Continue until the entire sequence has been decoded.

There are two ways to know when the entire sequence has been decoded. The decoder may
know the length of the sequence. in which case the deciphering process is stopped when
that many symbols have been obtained. The second way to know if the entire sequence has
been decoded is that a particular symbol is denoted as an end-of-transmission symbol. The
decoding of this symbol would bring the decoding process to a close.

4.4 Generating a Binary Code

Using the algorithm described in the previous section, we can obtain a tag for a given
sequence X. However. the binary code for the sequence is what we really want to know. We
want to find a binary code that will represent the sequence x in a unique and efficient manner.

We have said that the tag forms a unique representation for the sequence. This means that
the binary representation of the tag forms a unique binary code for the sequence. However,
we have placed no restrictions on what values in the unit interval the tag can take. The binary

4.4 Generating a Binary Code 93

representation of some of these values would be infinitely long. in which case, although the
code is unique, it may not be efficient. To make the code efficient. the binary representation
has to be truncated. But if we truncate the representation. is the resulting code still unique?
Finally, is the resulting code efficient? How far or how close is the average number of bits
per symbol from the entropy? We will examine all these questions in the next section.

Even if we show the code to be unique and efficient, the method described to this
point is highly impractical. In Section 4.4.2. we will describe a more practical algorithm for
generating the arithmetic code for a sequence. We will give an integer implementation of
this algorithm in Section 4.4.3.

4.4.1 Uniqueness and Efficiency of the Arithmetic
Code

T, (x) is a number in the interval [0, I). A binary code for T, (x) can be obtaincd by taking
the binary representation of this number and truncating it to /(x) = [log o J + 1 bits.

Example 4.4.1:

Consider a source A that generates letters from an alphabet of size four,
A={a,.a>. ay. ay}

with probabilities
Play =1 Pag='. Pay=1. Pa)=]
(1,)—2. a,) = 1 a, =3 ay =3

A binary code for this source can be generated as shown in Table 4.4. The quantity T, is

obtained using Equation (4.3). The binary representation of T, is truncated to [log me + 1
bits to obtain the binary code.
TABLE 4.4 A binary code for a four-letter alphabet.
Symbol Fy T, In Binary [log Pl\).l +1 Code
1 5 25 010 2 01
2 5 625 101 3 101
3 875 8125 4101 4 1101
4 1.0 9375 111 4 111
¢

We will show that a code obtained in this fashion is a uniquely decodable code. We first
show that this code is unique, and then we will show that it is uniquely decodable.

Recall that while we have been using Ty (x) as the tag for a sequence X. any number
in the interval [Fy(x — 1), Fy(x)) would be a unique identifier. Therefore, to show that the

code |[Ty(x)];y, I8 unique, al] we need to do is show that it is contained in the interval

94 4 ARITHMETIC CODING

[Fx(x —1), Fy(x)). Because we are truncating the binary representation of Ty(x) to obtain
[Tv (%)) 1x)» [Tx(X)] iy is less than or equal to T (x). More specifically,

_ - |
0<Ty(x)- [_TX(X)J/(x; < 1) (4.1 1)

As Ty(x) is strictly less than Fy(x)),
I.TX(X)JI(x) < Fy(x).
To show that | T, (%)]1xy = Fx(x—1), note that

1 1
2x) o log g 1+

From (4.3) we have

P(x -
% = Tx(x) — Fx(x—1).
Therefore,
- « 1
Tx(x)—FX(x—l)>W. (4.12)
Combining (4.11) and (4.12), we have
I.TX(X)JI(x) > Fy(x—1). (4.13)

Therefore, the code | Tx(x)],y, is a unique representation of T (x).

To show that this code is uniquely decodable, we will show that the code is a prefix
code; that is, no codeword is a prefix of another codeword. Because a prefix code is always
uniquely decodable, by showing that an arithmetic code is a prefix code, we automatically
show that it is uniquely decodable. Given a number a in the interval [0, 1) with an n-bit
binary representation [b,b,. .. b,], for any other number b to have a binary representation
with [6,b,. .. b,] as the prefix, b has to lie in the interval [a, a + s+)- (See Problem 1.)

If x and y are two distinct sequences, we know that [Ty(x)],x and LTX(y)J,(y, lie in
two disjoint intervals, [Fy (x — 1), Fy(x)) and [Fy(y — 1), Fy(y)). Therefore, if we can show
that for any sequence x, the interval [| Ty (X)) . [Tx(X)] + 35) lies entirely within the
interval [Fy(x — 1), Fy(x)), this will mean that the code for one sequence cannot be the
prefix for the code for another sequence.

4.4 Generating a Binary Code 95

We have already shown that | Ty(x)],, > Fy(x — 1). Therefore, all we need to do is
show that

Fy(x) - LTX(X)J[(X) > S

This is true because

Fy(x) — LTX(X)J/(x) > Fy(x)— T_x(x)
P(x)
T2
|
= zl(x)

This code is prefix free, and by taking the binary representation of Ty (x) and truncating it
to I{x) = [log F(‘ﬂ + 1 bits, we obtain a uniquely decodable code.

Although the code is uniquely decodable, how efficient is it? We have shown that the
number of bits /(x) required to represent Fy(x) with enough accuracy such that the code for
different values of x are distinct is

I(x) = |Vlog F(EX_)—l +1.

Remember that /(x) is the number of bits required to encode the entire sequence x. So, the
average length of an arithmetic code for a sequence of length m is given by

Lin = 3 P(x)I(x) (4.14)
= Y P(x) [{log P(l)_} } (4.15)
< TP [logm+l+l] (4.16)
= =Y P(x)log P(x) +2 Y P(x) (4.17)
= H(X")+2. (4.18)

Given that the average length is always greater than the entropy, the bounds on /. are
HX'"™) < lym < HX™) +2.

The length per symbol, /,, or rate of the arithmetic code is I"—:n—’ Therefore, the bounds on
l, are
H(x™ H(X'™) 2
X)) y, HE) 2 (4.19)

m m m

We have shown in Chapter 3 that for iid sources

H(X™) = mH(X). (4.20)

96 4 ARITHMETIC CODING

Therefore,

5
H(X) <1, < H(X)+ =. (4.21)
m
By increasing the length of the sequence, we can guarantee a rate as close to the entropy as
we desire.

4.4.2 Algorithm Implementation

In Section 4.3.1 we developed a recursive algorithm for the boundaries of the interval
containing the tag for the sequence being encoded as

[(n) — .anl)+(“(n~l) V/(H—IJ)FX(A\.” _]) {422)
“(n) — [(n—r])+(“(nfl)_[(uull)F'\,(»\A”) (423)

where x, is the value of the random variable corresponding to the nth observed symbol, /'
is the lower limit of the tag interval at the nth iteration. and 4" is the upper limit of the tag
interval at the nth iteration.

Before we can implement this algorithm. there is one major problem we have to resolve.
Recall that the rationale for using numbers in the interval [0. 1) as a tag was that there are
an infinite number of numbers in this interval. However. in practice the number of numbers
that can be uniquely represented on a machine is limited by the maximum number of digits
(or bits) we can use for representing the number. Consider the values of /"7 and 4" in
Example 4.3.5. As n gets larger, these values come closer and closer together. This means
that in order to represent all the subintervals uniquely we need increasing precision as the
length of the sequence increases. In a system with finite precision, the two values are bound
to converge. and we will lose all information about the sequence from the point at which
the two values converged. To avoid this situation, we need to rescale the interval. However,
we have to do it in a way that will preserve the information that is being transmitted. We
would also like to perform the encoding incrementally—that is. to transmit portions of the
code as the sequence is being observed, rather than wait until the entire sequence has been
observed before transmitting the first bit. The algorithm we describe in this section takes
care of the problems of synchronized rescaling and incremental encoding.

As the interval becomes narrower. we have three possibilities:

1. The interval is entirely confined to the lower half of the unit interval [0, 0.5).
2. The interval is entirely confined to the upper half of the unit interval [0.5, 1.0).
3. The interval straddles the midpoint of the unit interval.

We will look at the third case a little later in this section. First, let us examine the first two
cases. Once the interval is confined to either the upper or lower half of the unit interval, it
is forever confined to that half of the unit interval. The most significant bit of the binary
representation of all numbers in the interval [0, 0.5) is 0. and the most significant bit of the
binary representation of all numbers in the interval [0.5. 1] is 1. Therefore, once the interval
gets restricted to either the upper or lower half of the unit interval. the most significant bit of

4.4 Generating a Binary Code 97

the tag is fully determined. Therefore. without waiting to see what the rest of the sequence
looks like, we can indicate to the decoder whether the tag is confined to the upper or lower
half of the unit interval by sending a 1 for the upper half and a 0 for the lower half. The bit
that we send is also the first bit of the tag.

Once the encoder and decoder know which half contains the tag. we can ignore the half
of the unit interval not containing the tag and concentrate on the half containing the tag.
As our arithmetic s of finite precision, we can do this best by mapping the half interval
containing the tag to the full [0. 1} interval. The mappings required are

E, :[0,0.5) > [0, 1); E,(x) =2x (4.24)
E,:[0.5,1)—[0.1): E,(x) =2(x—=0.5). (4.25)

As soon as we perform either of these mappings, we lose all information about the most
significant bit. However, this should not matter because we have already sent that bit to the
decoder. We can now continue with this process, generating another bit of the tag every time

the tag interval is restricted to either half of the unit interval. This process of generating the
bits of the tag without waiting to see the entire sequence is called incremental encoding.

Example 4.4.2: Tag generation with scaling

Let’s revisit Example 4.3.5. Recall that we wish to encode the sequence 132 1. The
probability model for the source is P(a,) = 0.8, P(a,) =0.02, P(a;) = 0.18. Initializing 1®
to 1. and /' to 0. the first element of the sequence. 1, results in the following update:

" =0+(1-00=0
u" = 0+(1-0)(0.8) =0.8.

The interval [0, 0.8) is not confined to either the upper or lower half of the unit interval, so
we proceed.
The second element of the sequence is 3. This results in the update

[= 0+(0.8—0)F,(2) =0.8 x 0.82 = 0.656
u? =0+ (0.8—0)F,(3)=0.8x1.0=0.8.

Il

The interval [0.656,0.8) is contained entirely in the upper half of the unit interval, so we
send the binary code 1 and rescale:

[P = 2x(0.656-0.5) =0.312
u? =2x(0.8-0.5)=0.6.
The third element. 2, results in the following update equations:

[P = 03124 (0.6 —0.312)F, (1) =0.312+0.288 x 0.8 = 0.5424
u? = 0.3124(0.8-0.312)F,(2) =0.31240.288 x 0.82 = 0.54816.

98 4 ARITHMETIC CODING

The interval for the tag is [0.5424,0.54816). which is contained entirely in the upper half
of the unit interval. We transmit a | and go through another rescaling:

I = 2% (0.5424 — 0.5) = 0.0848

u® = 2 x(0.54816 —0.5) = 0.09632.

This interval is contained entirely in the lower half of the unit interval, so we send a 0 and
use the E, mapping to rescale:

I = 2 x (0.0848) = 0.1696
W'V = 2 x (0.09632) = 0.19264.

The interval is still contained entirely in the lower half of the unit interval, so we send
another 0 and go through another rescaling:

19 = 2 % (0.1596) = 0.3392

u = 2 x(0.19264) = 0.38528.

Il

Because the interval containing the tag remains in the lower half of the unit interval, we
send another 0 and rescale one more time:

1(1)

2x0.3392 =0.6784
@ = 2x0.38528 = 0.77056.

u

Now the interval containing the tag is contained entirely in the upper half of the unit interval.
Therefore, we transmit a | and rescale using the E, mapping:

[% = 2% (0.6784 —0.5) = 0.3568
u? = 2x(0.77056 — 0.5) = 0.54112.

At each stage we are transmitting the most significant bit that is the same in both the
upper and lower limit of the tag interval. If the most significant bits in the upper and
lower limit are the same, then the value of this bit will be identical to the most significant
bit of the tag. Therefore, by sending the most significant bits of the upper and lower endpoint
of the tag whenever they are identical. we are actually sending the binary representation of
the tag. The rescaling operations can be viewed as left shifts, which make the second most
significant bit the most significant bit.

Continuing with the last element, the upper and lower limits of the interval containing
the tag are

[= 0.3568 + (0.54112 — 0.3568) F (0) = 0.3568 +0.18422 x 0.0 = 0.3568
u® = 0.3568 4 (0.54112 — 0.3568) Fy (1) = 0.3568 4+ 0.18422 x 0.8 = 0.504256.

4.4 Generating a Binary Code 99

At this point. if we wished to stop encoding. all we need to do is inform the receiver of
the final status of the tag value. We can do so by sending the binary representation of any
value in the final tag interval. Generally. this value is taken to be /. In this particular
example. it is convenient to use the value of 0.5. The binary representation of 0.5 s .10
Thus. we would transmit a 1 followed by as many Os as required by the word length of the
implementation being used. ¢

Notice that the tag interval size at this stage is approximately 64 times the size it was
when we were using the unmodified algorithm. Therefore. this technique solves the finite
precision problem. As we shall soon see. the bits that we have been sending with each
mapping constitute the tag itself. which satisties our desire for incremental encoding. The
binary sequence generated during the encoding process in the previous example is 1100011.
We could simply treat this as the binary expansion of the tag. A binary number .1100011
corresponds to the decimal number 0.7734375. Looking back to Example 4.3.5. notice that
this number lies within the final tag interval. Therefore. we could use this to decode the
sequence.

However. we would like to do incremental decoding as well as incremental encoding.
This raises three questions:

1. How do we start decoding?
2. How do we continue decoding?

3. How do we stop decoding?

The second question is the easiest to answer. Once we have started decoding, all we have to
do is mimic the encoder algorithm. That is. once we have started decoding. we know how
to continue decoding. To begin the decoding process, we need to have enough information
{0 decode the first symbol unambiguously. In order to guarantee unambiguous decoding. the
number of bits received should point to an interval smaller than the smallest tag interval.
Based on the smallest tag interval. we can determine how many bits we need before we start
the decoding procedure. We will demonstrate this procedure in Example 4.4.4. First let's
“Jook at other aspects of decoding using the message from Example 4.4.2.

Example 4.4.3:

We will use a word length of 6 for this example. Note that because we are dealing with
real numbers this word length may not be sufficient for a different sequence. As in the
encoder, we start with initializing #'” to I and /""" to 0. The sequence of received bits is
110001100 .. 0. The first 6 bits correspond to a tag value of 0.765625, which means that
the first element of the sequence is 1, resulting in the following update:

M= 04+(1-0)0=0
" =04+ (1-0)(0.8) =0.38.

100 4 ARITHMETIC CODING

The interval [0, 0.8) is not confined to either the upper or lower half of the unit interval.
so we proceed. The tag 0.765625 lies in the top 18% of the interval [0, 0.8): therefore, the
second element of the sequence is 3. Updating the tag interval we get

I

0+(0.8—0)Fy(2) =0.8x0.82=0.656
@ = 04 (08-0)F,(3)=08x1.0=0.8.

=

The interval [0.656,0.8) is contained entirely in the upper half of the unit interval. At
the encoder, we sent the bit | and rescaled. At the decoder. we will shift 1 out of the receive
buffer and move the next bit in to make up the 6 bits in the tag. We will also update the tag
interval. resulting in

i

I = 2 x(0.656-0.5) =0.312

u = 2x(0.8—0.5)=0.6
while shifting a bit to give us a tag of 0.546875. When we compare this value with the
tag interval, we can see that this value lies in the 80-82% range of the tag interval, so we

decode the next element of the sequence as 2. We can then update the equations for the tag
interval as

Y = 0.3124(0.6 - 0.312)Fy (1) = 0.312+0.288 x 0.8 = 0.5424

WY = 0.312+(0.8—0.312)F(2) =0.312+0.288 x 0.82 = 0.54816.

As the tag interval is now contained entirely in the upper half of the unit interval. we
rescale using E, to obtain

I = 2 x(0.5424 — 0.5) = 0.0848
u'? = 2% (0.54816 — 0.5) = 0.09632.

fl

We also shift out a bit from the tag and shift in the next bit. The tag is now 000110. The
interval is contained entirely in the lower half of the unit interval. Therefore. we apply E,
and shift another bit. The lower and upper limits of the tag interval become

1% = 2% (0.0848) = 0.1696

ut = 2% (0.09632) = 0.19264

and the tag becomes 001100. The interval is still contained entirely in the lower half of
the unit interval, so we shift out another 0 to get a tag of 011000 and go through another
rescaling:

I = 2% (0.1696) = 0.3392

u? =2 x(0.19264) = 0.38528.

4.4 Generating a Binary Code 101

Because the interval containing the tag remains in the lower half of the unit interval. we
shift out another 0 from the tag to get 110000 and rescale one more time:

1P = 2x%0.3392 =0.6784
W = 2 x0.38528 = 0.77056.

i

Now the interval containing the tag is contained entirely in the upper half of the unit
interval. Therefore. we shift out a 1 from the tag and rescale using the E, mapping:

I = 2 x (0.6784 —0.5) = 0.3568
U =2 x(0.77056 —0.5) = 0.54112.

Now we compare the tag value to the the tag interval to decode our final element. The tag
is 100000, which corresponds to 0.5. This value lies in the first 80% of the interval, so we
decode this element as 1. ¢

If the tag interval is entirely contained in the upper or lower half of the unit interval,
the scaling procedure described will prevent the interval from continually shrinking. Now
we consider the case where the diminishing tag interval straddles the midpoint of the unit
interval. As our trigger for rescaling, we check to see if the tag interval is contained in the
interval [0.25.0.75). This will happen when [is greater than 0.25 and 1™ is less than
0.75. When this happens, we double the tag interval using the following mapping:

E,:[0.25.0.75) = [0.1); Ej(x) =2(x—0.25). (4.26)

We have used a 1 to transmit information about an E, mapping, and a 0 to transmit
information about an E, mapping. How do we transfer information about an E, mapping
to the decoder? We use a somewhat different strategy in this case. At the time of the £
mapping. we do not send any information to the decoder: instead, we simply record the fact
that we have used the £, mapping at the encoder. Suppose that after this, the tag interval gets
confined to the upper half of the unit interval. At this point we would use an E, mapping
and send a | to the receiver. Note that the tag interval at this stage is at least twice what it
would have been if we had not used the £, mapping. Furthermore, the upper limit of the
tag interval would have been less than 0.75. Therefore. if the F, mapping had not taken
place right before the E, mapping, the tag interval would have been contained entirely in
the lower half of the unit interval. At this point we would have used an E, mapping and
transmitted a O to the receiver. In fact, the effect of the earlier E5 mapping can be mimicked
at the decoder by following the E, mapping with an E, mapping. At the encoder. right after
we send a 1 to announce the E, mapping. we send a 0 to help the decoder track the changes
in the tag interval at the decoder. If the first rescaling after the £, mapping happens to be an
E, mapping. we do exactly the opposite. That is, we follow the 0 announcing an E, mapping
with a 1 to mimic the effect of the £; mapping at the encoder.

What happens if we have to go through a series of £, mappings at the encoder? We
simply keep track of the number of E; mappings and then send that many bits of the opposite
variety after the first £, or E, mapping. If we went through three E, mappings at the encoder.

102 4 ARITHMETIC CODING

followed by an £, mapping, we would transmit a 1 followed by three 0s. On the other hand,
if we went through an E| mapping after the E, mappings. we would transmit a 0 followed
by three Is. Since the decoder mimics the encoder. the E, mappings are also applied at the
decoder when the tag interval is contained in the interval [0.25.0.75).

4.4.3 Integer Implementation

We have described a floating-point implementation of arithmetic coding. Let us now repeat
the procedure using integer arithmetic and generate the binary code in the process.

Encoder Implementation

The first thing we have to do is decide on the word length to be used. Given a word length
of m. we map the important values in the [0, 1) interval to the range of 2" binary words.
The point 0 gets mapped to

motmes
N

00...0,

I gets mapped to

m times
S

... 1

The value of 0.5 gets mapped to

-1 umes
e e,

100...0.
The update equations remain almost the same as Equations (4.9) and (4. 10). As we are going
to do integer arithmetic, we need to replace F, (x) in these equations.

Define n; as the number of times the symbol j occurs in a sequence of length

Total Count. Then Fy (k) can be estimated by
~h
Fotk) = == (4.27)
‘ Total Count
If we now define

A

Cum_Count(k) =3 n,
i=1

we can write Equations (4.9) and (4.10) as

jor _ o (=1 1y Cum_Count(x, —1) (4.28)
Total Count)
u e W =" 4 1) x Cum_Count(x,) . (4.29)
Total Count

4.4 Generating a Binary Code 103

where x, is the nth symbol to be encoded. [x] is the largest integer less than or equal
to x, and where the addition and subtraction of one is to handle the effects of the integer
arithmetic.

Because of the way we mapped the endpoints and the halfway points of the unit interval,
when both /" and 1" are in either the upper half or lower half of the interval, the leading
bit of «'" and /' wiil be the same. If the leading or most significant bit (MSB) is 1, then
the tag interval is contained entirely in the upper half of the [00 ... 0,11 ... 1] interval. If
the MSB is 0, then the tag interval is contained entirely in the lower half. Applying the E|
and E, mappings is a simple matter. All we do is shift out the MSB and then shift in a 1
into the integer code for 4™ and a 0 into the code for /). For example. suppose m was 6,
u' was 54, and IV was 33. The binary representations of «'™ and /" are 110110 and
100001, respectively. Notice that the MSB for both endpoints is 1. Following the procedure
above, we would shift out (and transmit or store) the |, and shift in 1 for '™ and 0 for /",
obtaining the new value for u" as 101101, or 45, and a new value for /' as 000010, or 2.
This is equivalent to performing the E, mapping. We can sce how the E, mapping would
also be performed using the same operation.

To see if the E, mapping needs to be performed, we monitor the second most significant
bit of u' and /'”. When the second most significant bit of 4"’ is 0 and the second most
significant bit of /' is 1, this means that the tag interval lies in the middle half of the
[00...0,11...1]interval. To implement the F; mapping, we complement the second most
significant bit in ¥ and [, and shift left, shifting in a 1 in 4 and a 0 in IV, We also
keep track of the number of E, mappings in Scale3.

We can summarize the encoding algorithm using the following pseudocode:

Initialize / and u.

Get symbol.
i+ (v —1+1)x Cum_Count(x—1)
TotalCount
(=14 1) x Cum_Count(x)
[+ —1
TotalCount

while(MSB of « and [are both equal to b or E; condition holds)
if(MSB of « and ! are both equal to b)

{

send b
shift / to the left by | bit and shift 0 into LSB
shift u to the left by I bit and shift 1 into LSB
while(Scale3 > 0)

{

send complement of b

decrement Scale3

J

104 4 ARITHMETIC CODING

if(E; condition holds)

{
shift / to the left by 1 bit and shift 0 into LSB

shift u to the left by 1 bit and shift 1 into LSB
complement (new) MSB of / and u
increment Scale3

}

To see how all this functions together, let’s look at an example.

Example 4.4.4:

We will encode the sequence 1 3 2 1 with parameters shown in Table 4.5. First we need to
select the word length m. Note that Cum_Count(1) and Cum_Count(2) differ by only I.
Recall that the values of Cum_Count will get translated to the endpoints of the subintervals.
We want to make sure that the value we select for the word length will allow enough range
for it to be possible to represent the smallest difference between the endpoints of intervals.
We always rescale whenever the interval gets small. In order to make sure that the endpoints
of the intervals always remain distinct, we need to make sure that all values in the range
from O to Total_Count, which is the same as Cum_Count(3). are uniquely represented in
the smallest range an interval under consideration can be without triggering a rescaling. The
interval is smallest without triggering a rescaling when '™ is just below the midpoint of the
interval and 4™ is at three-quarters of the interval. or when «" is right at the midpoint of
the interval and /' is just below a quarter of the interval. That is, the smallest the interval
[/, u'"] can be is one-quarter of the total available range of 2" values. Thus, m should be
large enough to accommodate uniquely the set of values between 0 and Total_Count.

TABLE 4.5 Values of some of the parameters for
arithmetic coding example.

Count(1) =40 Cum_Count(0) =0 Scale3 =0
Count(2) =1 Cum_Count(1) =40
Count(3) =9 Cum_Count(2) = 41
Total_Count = 50 Cum_Count(3) = 50

For this example. this means that the total interval range has to be greater than 200.
A value of m = 8 satisfies this requirement.
With this value of m we have

1" = 0 = (00000000), (4.30)
u' = 255 =(11111111), (4.31)

where (--+), is the binary representation of a number.

4.4 Generating a Binary Code 105

The first element of the sequence to be encoded is 1. Using Equations (4.28) and (4.29),

256 x Cum_Count(0

1= oﬂ X “':6 ouni()J = 0 = (00000000), (4.32)
256 % Cum_Couni(1

W = 0+L X "';’(')- oun()J—1:203:(11001011)2. (4.33)

The next element of the sequence is 3.

. 204 x Cum_Count(2

1 = 0+L X "';16 ount()J = 167 = (10100111), (4.34)
; 204 x Cum_Count(3

W = 0% x “';’6 ount()J—1=203=(11001011)2 (4.35)

The MSBs of /¥ and u'® are hoth 1. Therefore, we shift this value out and send it to the
decoder. All other bits are shifted left by 1 bit, giving

I = (01001110), =78 (4.36)
u? = (10010111), = 151. (4.37)

Notice that while the MSBs of the limits are different, the second MSB of the upper limit is
0, while the second MSB of the lower limit is 1. This is the condition for the E; mapping.
We complement the second MSB of both limits and shift 1 bit to the left, shifting in a O as
the LSB of /> and a | as the LSB of u'®. This gives us

I = (00011100), =28 (4.38)
¥ = (10101111), = 175. (4.39)

We also increment Scale3 to a value of 1.
The next element in the sequence is 2. Updating the limits, we have

148 x Cum_Count(1
= 28+L x ”';16 ount()J = 146 = (10010010), (4.40)
148 x Cum_Count(2
. 28+L X “';76 ouni()J ~1=148=(10010100),. (4.41)
The two MSBs are identical, so we shift out a | and shift left by 1 bit:
I = (00100100), = 36 (4.42)
u'? = (00101001), =41. (4.43)

As Scale3 is 1, we transmit a O and decrement Scale3 to (). The MSBs of the upper and
lower limits are both 0, so we shift out and transmit 0:

I = (01001000), = 72 (4.44)
u? = (01010011), = 83. (4.45)

106 4 ARITHMETIC CODING

Both MSBs are again 0, so we shift out and transmit (:
"' = (10010000), = 144 (4.46)
u = (10100111), = 167. (4.47)

Now both MSBs are 1, so we shift out and transmit a 1. The limits become

[= (00100000), = 32 (4.48)
u = (01001111), =79. (4.49)

Once again the MSBs are the same. This time we shift out and transmit a 0.
I = (01000000), = 64 (4.50)
W = (10011111), = 159. (4.51)

Now the MSBs are different. However, the second MSB for the lower limit is 1 while the
second MSB for the upper limit is 0. This is the condition for the E, mapping. Applying the
E; mapping by complementing the second MSB and shifting | bit to the left, we get
I = (00000000), = 0 (4.52)
u® = (10111111), = 191. (4.53)

We also increment Scale3 to 1.
The next element in the sequence to be encoded is 1. Therefore.

192 x Cum_Count(0

M = 0+L . ’”:6 ount{)J — 0 = (00000000), (4.54)
192 x Cum_Count(1

W = 0+L x “':6 ount{)J ~ 1 =152 = (10011000),. (4.55)

The encoding continues in this fashion. To this point we have generated the binary sequence
1100010. If we wished to terminate the encoding at this point. we have to send the current
status of the tag. This can be done by sending the value of the lower limit /7. As (" is
0, we will end up sending eight Os. However, Scale3 at this point is 1. Therefore, after we
send the first 0 from the value of /Y. we need to send a | before sending the remaining
seven 0s. The final transmitted sequence is 1100010010000000. ¢

Once we have the encoder implementation. the decoder implementation is easy to describe.
As mentioned earlier, once we have started decoding all we have to do is mimic the encoder
algorithm. Let us first describe the decoder algorithm using pseudocode and then study its
implementation using Example 4.4.5.

4.4 Generating a Binary Code 107

Decoder Algorithm

Initialize / and u.
Read the first m bits of the received bitstream into tag f.

k=0
g((t—141) x Total Count — 1

while J > Cum_Count(k))
u—I+1
k<«—k+1
decode symbol x.
(u—1+1) x Cum_Count(x—1)

Total Count J

(u—141) x Cum_Count(x)J _q
Total Count

while(MSB of u and / are both equal to b or E, condition holds)
if(MSB of u and / are both equal to b)

{
shift [to the left by 1 bit and shift 0 into LSB

shift u to the left by 1 bit and shift 1 into LSB
shift £ to the left by 1 bit and read next bit from received bitstream into LSB

J

if(E; condition holds)

R
shift [to the left by 1 bit and shift 0 into LSB
shift u to the left by I bit and shift 1 into LSB
shift 7 to the left by 1 bit and read next bit from received bitstream into LSB
complement (new) MSB of [, u, and ¢

l<—1+L

ue—l+[

Example 4.4.5:

After encoding the sequence in Example 4.4.4, we ended up with the following binary
sequence: 1100010010000000. Treating this as the received sequence and using the param-
eters from Table 4.5, let us decode this sequence. Using the same word length, eight, we
read in the first 8 bits of the received-sequence to form the tag r:

t = (11000100), = 196.
We initialize the lower and upper limits as

I = (00000000), = 0
u = (11111111), = 255.

108 4 ARITHMETIC CODING

To begin decoding, we compute

(t—1+1)yx Total Count—1| 1197 x50—1 _ 18
u—I1+1 “L255—0+1 B

and compare this value to

0
40
41
50

Cum_Count =

Since
0 < 38 < 40,

we decode the first symbol as 1. Once we have decoded a symbol. we update the lower and
upper limits:

256 x Cum_Count{Q ‘ 0
[=0+ . 25() x — | =0
Total Count _| 50
256 x Cum_Count|1 ' 40
u =0+ —1=0+ 2% — | =1=203
Total Count 50

or

I = (00000000),
- u = (11001011),.

The MSB of the limits are different and the E, condition does not hold. Therefore. we
continue decoding without modifying the tag value. To obtain the next symbol, we compare

(r—1+1) x Total Count —1
u—1I+1

which is 48, against the Cum_Count array:
Cum_Count|[2] <48 < Cum_Count[3].

Therefore, we decode 3 and update the limits:

Total Count

0+ 204 x Cum_Count|3]
Total Count

204 x Cum_Count[2 41
=0 [X Lum. "””[]J=0+L204><56J=167:(1010011)2

50
J— 1=0+ \\204x gaJ —1 =203 = (11001011),.

4.5 Comparison of Huffman and Arithmetic Coding 109

As the MSB of « and 7 are the same, we shift the MSB out and read in a 0 for the LSB of
[and a | for the LSB of u. We mimic this action for the tag as well. shifting the MSB out
and reading in the next bit from the received bitstream as the LSB:

[= (01001110),
u = (10010111),
t = (10001001),.

Examining / and « we can see we have an E, condition. Therefore, for /, u, and t, we
shift the MSB out. complement the new MSB, and read in a 0 as the LSB of /. a | as the
LSB of u. and the next bit in the received bitstream as the LSB of r. We now have

[= (00011100), = 28
w = (10101111), = 175
= (10010010), = 146.

To decode the next symbol. we compute

(t—14+1) x Total Count—1 _ 40,
u—1+1
Since 40 < 40 < 41. we decode 2

Updating the limits using this decoded symbol, we get

| =2

t(l75 ’8+1)x40
8+

j 146 = (10010010),
B

28+

H

= 148 = (10010100),.

Y

t(175—78+1)x4l

We can see that we have quite a few bits to shift out. However, notice that the lower limit
I has the same value as the tag r. Furthermore, the remaining received sequence consists
entirely of (s. Therefore. we will be performing identical operations on numbers that are the
same, resulting in identical numbers. This will result in the final decoded symbol being 1.
We knew this was the final symbol to be decoded because only four symbols had been
encoded. In practice this information has to be conveyed to the decoder. ¢

4.5 Comparison of Huffman and Arithmetic
Coding

We have described a new coding scheme that, although more complicated than Huffman
coding. allows us to code sequences of symbols. How well this coding scheme works depends
on how it is used. Let’s first try to use this code for encoding sources for which we know
the Huffman code.

110 4 ARITHMETIC CODING

Looking at Example 4.4.1, the average length for this code is

I =2x054+3x0254+4x%x0.125+4x0.125 (4.56)
= 2.75 bits/symbol. (4.57)

Recall from Section 2.4 that the entropy of this source was 1.75 bits/symbol and the Huffman
code achieved this entropy. Obviously, arithmetic coding is not a good idea if you are going
to encode your message one symbol at a time. Let’s repeat the example with messages
consisting of two symbols. (Note that we are only doing this to demonstrate a point. In
practice, we would not code sequences this short using an arithmetic code.)

Example 4.5.1:

If we encode two symbols at a time, the resulting code is shown in Table 4.6.

TABLE 4.6 Arithmetic code for two-symbol sequences.

Message P(x) Ty(x) Ty(x) in Binary Nog 551+1 Code
11 .25 125 .001 3 001
12 125 3125 .0101 4 0101
13 .0625 40625 .01101 5 01101
14 0625 46875 01111 5 01111
21 125 .5625 .1001 4 1001
22 .0625 65625 10101 5 10101
23 03125 703125 .101101 6 101101
24 03125 734375 101111 6 101111
31 .0625 78125 .11001 5 11001
32 03125 .828125 .110101 6 110101
33 015625 8515625 1101101 7 1101101
34 015625 8671875 1101111 7 1101111
41 .0625 90625 11101 5 11101
42 .03125 953125 111101 6 111101
43 015625 9765625 111101 7 1111101
44 .015625 .984375 Jd11111 7 1111111

The average length per message is 4.5 bits. Therefore, using two symbols at a time we
get a rate of 2.25 bits/symbol (certainly better than 2.75 bits/symbol, but still not as good
as the best rate of 1.75 bits/symbol). However, we see that as we increase the number of
symbols per message, our results get better and better. ¢

How many samples do we have to group together to make the arithmetic coding scheme
perform better than the Huffman coding scheme? We can get some idea by looking at the
bounds on the coding rate.

4.5 Comparison of Huffman and Arithmetic Coding m

Recall that the bounds on the average length I, of the arithmetic code are
2
HX)<!l, <HX)+ —.
m

It does not take many symbols in a sequence before the coding rate for the arithmetic code
becomes quite close to the entropy. However, recall that for Huffman codes, if we block m
symbols together, the coding rate is

H(X) <ly <H(X)+ —1-
m

The advantage seems to lie with the Huffman code, although the advantage decreases
with increasing m. However, remember that to generate a codeword for a sequence of length
m, using the Huffman procedure requires building the entire code for all possible sequences
of length m. If the original alphabet size was k, then the size of the codebook would be k™.
Taking relatively reasonable values of k = 16 and m = 20 gives a codebook size of 162! This
is obviously not a viable option. For the arithmetic coding procedure, we do not need to build
the entire codebook. Instead, we simply obtain the code for the tag corresponding to a given
sequence. Therefore, it is entirely feasible to code sequences of length 20 or much more. In
practice, we can make m large for the arithmetic coder and not for the Huffman coder. This
means that for most sources we can get rates closer to the entropy using arithmetic coding
than by using Huffman coding. The exceptions are sources whose probabilities are powers
of two. In these cases, the single-letter Huffman code achieves the entropy, and we cannot
do any better with arithmetic coding, no matter how long a sequence we pick.

The amount of gain also depends on the source. Recall that for Huffman codes we are
guaranteed to obtain rates within 0.086 + p,,, of the entropy, where p,. is the probability
of the most probable letter in the alphabet. If the alphabet size is relatively large and the
probabilities are not too skewed, the maximum probability p,,.. is generally small. In these
cases, the advantage of arithmeti¢ coding over Huffman coding is small, and it might not be
worth the extra complexity to use arithmetic coding rather than Huffman coding. However,
there are many sources, such as facsimile, in which the alphabet size is small, and the
probabilities are highly unbalanced. In these cases, the use of arithmetic coding is generally
worth the added complexity.

Another major advantage of arithmetic coding is that it is easy to implement a system with
multiple arithmetic codes. This may seem contradictory, as we have claimed that arithmetic
coding is more complex than Huffman coding. However, it is the computational machinery
that causes the increase in complexity. Once we have the computational machinery to
implement one arithmetic code, all we need to implement more than a single arithmetic code
is the availability of more probability tables. If the alphabet size of the source is small, as in
the case of a binary source, there is very little added complexity indeed. In fact, as we shall see
in the next section, it is possible to develop multiplication-free arithmetic coders that are quite
simple to implement (nonbinary multiplication-free arithmetic coders are described in [44]).

Finally, it is much easier to adapt arithmetic codes to changing input statistics. All we
need to do is estimate the probabilities of the input alphabet. This can be done by keeping a
count of the letters as they are coded. There is no need to preserve a tree, as with adaptive
Huffman codes. Furthermore, there is no need to generate a code a priori, as in the case of

112 4 ARITHMETIC CODING

Huffman coding. This property allows us to separate the modeling and coding procedures
in a manner that is not very feasible with Huffman coding. This separation permits greater
flexibility in the design of compression systems, which can be used to great advantage.

4.6 Adaptive Arithmetic Coding

We have seen how to construct arithmetic coders when the distribution of the source, in the
form of cumulative counts, is available. In many applications such counts are not available
a priori. It is a relatively simple task to modity the algorithms discussed so that the coder
learns the distribution as the coding progresses. A straightforward implementation is to start
out with a count of 1 for each letter in the alphabet. We need a count of at least 1 for each
symbol. because if we do not we will have no way of encoding the symbol when it is first
encountered. This assumes that we know nothing about the distribution of the source. If we
do know something about the distribution of the source, we can let the initial counts reflect
our knowledge.

After coding is initiated. the count for each letter encountered is incremented after
that letter has been encoded. The cumulative count table is updated accordingly. It is very
important that the updating take place after the encoding: otherwise the decoder will not
be using the same cumulative count table as the encoder to perform the decoding. At the
decoder. the count and cumulative count tables are updated after each letter is decoded.

In the case of the static arithmetic code. we picked the size of the word based on Total
Count. the total number of symbols to be encoded. In the adaptive case. we may not know
ahead of time what the total number of symbols is going to be. In this case we have to pick
the word length independent of the total count. However, given a word length m we know
that we can only accomodate a total count of 2™ -2 or less. Therefore, during the encoding and
decoding processes when the total count approaches 2= we have to go through a rescaling.
or renormalization. operation. A simple rescaling operation is to divide all counts by 2 and
rounding up the result so that no count gets rescaled to zero. This periodic rescaling can
have an added benefit in that the count table better reflects the local statisitcs of the source.

4.7 Applications

Arithmetic coding is used in a variety of lossless and lossy compression applications.
It is a part of many international standards. In the area of multimedia there are a few
principal organizations that develop standards. The International Standards Organization
(ISO) and the International Electrotechnical Commission (IEC) are industry groups that work
on multimedia standards, while the International Telecommunications Union (ITU). which
is part of the United Nations, works on multimedia standards on behalf of the member states
“of the United Nations. Quite often these institutions work together to create international
standards. In later chapters we will be looking at a number of these standards. and we will
see how arithmetic coding is used in image compression. audio compression, and video
compression standards.
For now let us look at the lossless compression example from the previous chapter.

4.8 Summary 13

TABLE 4.7 Compression vsing adaptive arithmetic coding of pixel valves.

Total Size Compression Ratio Compression Ratio
Image Name Bits/Pixel (bytes) (artthmetic) (Huffman)
Sena 6.52 53,431 1.23 1.16
Sensin 7.12 58.306 1.12 1.27
Earth 4.67 38.248 1.71 1.67
Omaha 6.84 56,061 1.17 1.14

TABLE 4.8 Compression using adaptive arithmetic coding of pixel differences.

Total Size Compression Ratio Compression Ratio
Image Name Bits/Pixel (bytes) (arithmetic) (Huffman)
Sena 3.89 31.847 2.06 2.08
Sensin 4.56 37.387 1.75 1.73
Earth 392 32,137 2.04 2.04
Omaha 6.27 51.393 1.28 1.26

In Tables 4.7 and 4.8, we show the results of using adaptive arithmetic coding to
encode the same test images that were previously encoded using Huffman coding. We have
included the compression ratios obtained using Huffman code from the previous chapter
for comparison. Comparing these values to those obtained in the previous chapter, we can
see very little change. The reason is that beacuse the alphabet size for the images is quite
large. the value of p,, is quite small. and in the Huffman coder performs very close to the
entropy.

As we mentioned before, a major advantage of arithmetic coding over Huffman coding
is the ability to separate the modeling and coding aspects of the compression approach. In
terms of image coding, this allows us to use a number of different models that take advantage
of local properties. For example, we could use different decorrelation strategies in regions
of the image that are quasi-constant and will, therefore, have differences that are smail, and
in regions where there is a lot of activity, causing the presence of larger difference values.

max

4.8 Summary

In this chapter we introduced the basic ideas behind arithmetic coding. We have shown
that the arithmetic code is a uniquely decodable code that provides a rate close to the
entropy for long stationary sequences. This ability to encode sequences directly instead of
as a concatenation of the codes for the elements of the sequence makes this approach more
efficient than Huffman coding for alphabets with highly skewed probabilities. We have
looked in some detail at the implementation of the arithmetic coding approach.

The arithmetic coding results in this chapter were obtained by using the program provided
by Witten, Neal, and Cleary [45]. This code can be used (with some modifications) for
exploring different aspects of arithmetic coding (see problems).

114

4 ARITHMETIC CODING

Further Reading

2.

The book Text Compression, by T.C. Bell, J.G. Cleary, and I.H. Witten [1], contains
a very readable section on arithmetic coding, complete with pseudocode and C code.

A thorough treatment of various aspects of arithmetic coding can be found in the
excellent chapter Arithmetic Coding, by Amir Said [46] in the Lossless Compression
Handbook.

There is an excellent tutorial article by G.G. Langdon, Jr. [47] in the March 1984
issue of the IBM Journal of Research and Development.

The separate model and code paradigmi\s explored in a precise manner in the context
of arithmetic coding in a paper by J.J. Rissanen and G.G. Langdon [48].

The separation of modeling and coding is exploited in a very nice manner in an early
paper by G.G. Langdon and J.J. Rissanen [49].

Various models for text compression that can be used effectively with arithmetic
coding are described by T.G. Bell, L.H. Witten, and J.G. Cleary [50] in an article in
the ACM Computing Surveys.

The coder used in the JBIG algorithm is a descendant of the Q coder, described in
some detail in several papers [51, 52, 53] in the November 1988 issue of the IBM
Journal of Research and Development.

4.9 Projects and Problems

Given a number a in the interval [0, 1) with an n-bit binary representation [b,b,. . . b,],
show that for any other number b to have a binary representation with [bb,. .. b,] as
the prefix, b has to lie in the interval [a, a + &).

The binary arithmetic coding approach specified in the JBIG standard can be used for
coding gray-scale images via bit plane encoding. In bit plane encoding, we combine
the most significant bits for each pixel into one bit plane, the next most significant
bits into another bit plane, and so on. Use the function extrctbp to obtain eight
bit planes for the sena.img and omaha.img test images, and encode them using
arithmetic coding. Use the low-resolution contexts shown in Figure 7.11.

Bit plane encoding is more effective when the pixels are encoded using a Gray
code. The Gray code assigns numerically adjacent values binary codes that differ by
only 1 bit. To convert from the standard binary code byb,b,. . . by to the Gray code
20818, - - &7, we can use the equations

8 = by
& = b ®b_,.

Convert the test images sena.img and omaha. img to a Gray code representation,
and bit plane encode. Compare with the results for the non-Gray-coded representation.

4.9 Projects and Problems 115

4.
5.

TABLE 4.9 Probability model for
Problems 5 and 6.

Letter Probability
a, 2
a, 3
a, S

TABLE 4.10 Frequency counts
for Problem 7.

Letter Count
a 37
38
c 25

In Example 4.4.4, repeat the encoding using m = 6. Comment on your results.

Given the probability model in Table 4.9, find the real valued tag for the sequence
a, a, a, a, a, a,.

For the probability model in Table 4.9. decode a sequence of length 10 with the tag
0.63215699.

Given the frequency counts shown in Table 4.10:

(d) What is the word length required for unambiguous encoding?

(b) Find the binary code for the sequence abacabb.

{e) Decode the code you obtained to verify that your encoding was correct.

Generate a binary sequence of length L with P(0) = 0.8, and use the arithmetic coding
algorithm to encode it. Plot the difference of the rate in bits/symbol and the entropy
as a function of L. Comment on the effect of L on the rate.

Dictionary Techniques

5.1 Overview

n the previous two chapters we looked at coding techniques that assume a
source that generates a sequence of independent symbols. As most sources are
correlated to start with, the coding step is generally preceded by a decorrelation
step. In this chapter we will look at techniques that incorporate the structure in
the data in order to increase the amount of compression. These techniques—
both static and adaptive (or dynamic)—build a list of commonly occurring patterns and
encode these patterns by transmitting their index in the list. They are most useful with sources
that generate a relatively small number of patterns quite frequently, such as text sources and
computer commands. We discuss applications to text compression, modem communications,
and image compression.

5.2 Introduction

In many applications, the output of the source consists of recurring patterns. A classic
example is a text source in which certain patterns or words recur constantly. Also, there are
certain patterns that simply do not occur, or if they do, occur with great rarity. For example,
we can be reasonably sure that the word Limpopo' occurs in a very small fraction of the
text sources in existence. ’

A very reasonable approach to encoding such sources is to keep a list, or dictionary,
of frequently occurring patterns. When these patterns appear in the source output, they are
encoded with a reference to the dictionary. If the pattern does not appear in the dictionary,
then it can be encoded using some other, less efficient, method. In effect we are splitting

! “How the Elephant Got Its Trunk™ in Just So Stories by Rudyard Kipling.

118 5 DICTIONARY TECHNIQUES

the input into two classes, frequently occurring patterns and infrequently occurring patterns.
For this technique to be effective, the class of frequently occurring patterns, and hence the
size of the dictionary, must be much smaller than the number of all possible patterns.
Suppose we have a particular text that consists of four-character words, three characters
from the 26 lowercase letters of the English alphabet followed by a punctuation mark.
Suppose our source alphabet consists of the 26 lowercase letters of the English alphabet and
the punctuation marks comma, period, exclamation mark, question mark, semicolon, and
colon. In other words, the size of the input alphabet is 32. If we were to encode the text
source one character at a time, treating each character as an equally likely event, we would
need 5 bits per character. Treating all 32* (= 2% = 1,048,576) four-character patterns as
equally likely, we have a code that assigns 20 bits to each four-character pattern. Let us now
put the 256 most likely four-character patterns into a dictionary. The transmission scheme
works as follows: Whenever we want to send a pattern that exists in the dictionary, we will
send a 1-bit flag, say, a 0, followed by an 8-bit index corresponding to the entry in the
dictionary. If the pattern is not in the dictionary, we will send a I followed by the 20-bit
encoding of the pattern. If the pattern we encounter is not in the dictionary. we will actually
use more bits than in the original scheme, 21 instead of 20. But if it is in the dictionary, we
will send only 9 bits. The utility of our scheme will depend on the percentage of the words
we encounter that are in the dictionary. We can get an idea about the utility of our scheme
by calculating the average number of bits per pattern. If the probability of encountering a
pattern from the dictionary is p, then the average number of bits per pattern R is given by

R=9p+21(1—p)=21—12p. {5.1)

For our scheme to be useful, R should have a value less than 20. This happens when
p > 0.084. This does not seem like a very large number. However, note that if all patterns
were occurring in an equally likely manner, the probability of encountering a pattern from
the dictionary would be less than 0.00025!

We do not simply want a coding scheme that performs slightly better than the sunple-
minded approach of coding each pattern as equally likely: we would like to improve the
performance as much as possible. In order for this to happen, p should be as large as possible.
This means that we should carefully select patterns that are most likely to occur as entries
in the dictionary. To do this, we have to have a pretty good idea about the structure of the
source output. If we do not have information of this sort available to us prior to the encoding
of a particular source output, we need to acquire this information somehow when we are
encoding. If we feel we have sufficient prior knowledge, we can use a static approach; if not,
we can take an adaptive approach. We will look at both these approaches in this chapter.

5.3 Static Dictionary

Choosing a static dictionary technique is most appropriate when considerable prior knowl-
edge about the source is available. This technique is especially suitable for use in specific
applications. For example, if the task were to compress the student records at a university, a
static dictionary approach may be the best. This is because we know ahead of time that cer-
tain words such as “Name” and “Student ID” are going to appear in almost all of the records.

5.3 Static Dictionary 119

Other words such as **Sophomore,” “credits,” and so on will occur quite often. Depending
on the location of the university, certain digits in social security numbers are more likely to
occur. For example, in Nebraska most student ID numbers begin with the digits 505. In fact,
most entries will be of a recurring nature. In this situation, it is highly efficient to design a
compression scheme based on a static dictionary containing the recurring patterns. Similarly,
there could be a number of other situations in which an application-specific or data-specific
static-dictionary-based coding scheme would be the most efficient. It should be noted that
these schemes would work well only for the applications and data they were designed for.
If these schemes.were to be used with different applications, they may cause an expansion
of the data instead of compression.

A static dictionary technique that is less specific to a single application is digram coding.
We describe this in the next section.

5.3.1 Digram Coding

One of the more common forms of static dictionary coding is digram coding. In this form
of coding, the dictionary consists of all letters of the source alphabet followed by as many
pairs of letters, called digrams, as can be accommodated by the dictionary. For example,
suppose we were to construct a dictionary of size 256 for digram coding of all printable
ASCII characters. The first 95 entries of the dictionary would be the 95 printable ASCII
characters. The remaining 161 entries would be the most frequently used pairs of characters.

The digram encoder reads a two-character input and searches the dictionary to see if this
input exists in the dictionary. If it does. the corresponding index is encoded and transmitted.
If it does not, the first character of the pair is encoded. The second character in the pair
then becomes the first character of the next digram. The encoder reads another character to
complete the digram, and the search procedure is repeated.

Example 5.3.1:

Suppose we have a source with a five-letter alphabet A = {a, b. ¢, d, r}. Based on knowledge
about the source, we build the dictionary shown in Table 5.1.

TABLE 5.1 A sample dictionary.

Code Entry Code Entry
000 a 100 r
001 b 101 ab
010 fa 110 ac
011 d 111 ad

Suppose we wish to encode the sequence
abracadabra

The encoder reads the first two characters ab and checks to see if this pair of letters exists
in the dictionary. It does and is encoded using the codeword 101. The encoder then reads

120

the next two characters ra and checks to see if this pair occurs in the dictionary. It does not,
so the encoder sends out the code for r, which is 100, then reads in one more character, c,
to make the two-character pattern ac. This does exist in the dictionary and is encoded as
110. Continuing in this fashion, the remainder of the sequence is coded. The output string

for the given input sequence s 101100110111101100000.

DICTIONARY TECHNIQUES

TABLE 5.2 Thirty most frequently occurring pairs of characters
in a 41,364-character-long LaTeX document.
Pair Count Pair Count
eb 1128 ar 314
bt 838 at 313
b 823 bw 309
th 817 te 296
he 712 bs 295
in 512 db 272
sb 494 bo 266
er 433 io 257
ba 425 co 256
th 401 re 247
en 392 kS 246
on 385 rb 239
nb 353 di 230
t 322 ic 229
bi 317 ct 226
TABLE 5.3 Thirty most frequently occurring pairs of
characters in a collection of C programs
containing 64,983 characters.
Pair Count Pair Count
b 5728 st 442
nlb 1471 le 440
vnl 1133 ut 440
in 985 i 416
nt 739 ar 381
= 687 or 374
bi 662 b 373
h 615 en 371
b= 612 er 358
)s 558 ri 357
N 554 at 352
ninl 506 pr 351
bf 505 te 349
eb 500 an 348
bx 444 lo 347

5.4 Adaptive Dictionary 121

A list of the 30 most frequently occurring pairs of characters in an earlier version of this
chapter is shown in Table 5.2. For comparison, the 30 most frequently occurring pairs of
characters in a set of C programs is shown in Table 5.3.

In these tables, b corresponds to a space and nl corresponds to a new line. Notice how
different the two tables are. It is easy to see that a dictionary designed for compressing IfTgX
documents would not work very well when compressing C programs. However, generaily
we want techniques that will be able to compress a variety of source outputs. If we wanted
to compress computer files, we do not want to change techniques based on the content of
the file. Rather, we would like the technique to adapt to the characteristics of the source
output. We discuss adaptive-dictionary-based techniques in the next section.

5.4 Adaptive Dictionary

Most adaptive-dictionary-based techniques have their roots in two landmark papers by
Jacob Ziv and Abraham Lempel in 1977 [54] and 1978 [55]. These papers provide two
different approaches to adaptively building dictionaries, and each approach has given rise
to a number of variations. The approaches based on the 1977 paper are said to belong to
the LZ77 family (also known as LZ1), while the approaches based on the 1978 paper are
said to belong to the LZ78, or LZ2. family. The transposition of the initials is a historical
accident and is a convention we will observe in this book. In the following sections, we first
describe an implementation of each approach followed by some of the more well-known
variations.

5.4.1 The LZ77 Approach

In the L.Z77 approach, the dictionary is simply a portion of the previously encoded sequence.
The encoder examines the input sequence through a sliding window as shown in Figure 5.1.
The window consists of two parts, a search buffer that contains a portion of the recently
encoded sequence, and a look-ahead buffer that contains the next portion of the sequence to
be encoded. In Figure 5.1, the search buffer contains eight symbols, while the look-ahead
buffer contains seven symbols. In practice, the sizes of the buffers are significantly larger;
however, for the purpose of explanation, we will keep the buffer sizes small.

To encode the sequence in the look-ahead buffer, the encoder moves a search pointer back
through the search buffer until it encounters a match to the first symbol in the look-ahead

Match pointer

axxabraxadabJrJa]r]r]a:rrax

Search buffer Look-ahead buffer

FIGURE 5.1 Encoding using the LZ77 approach.

122 5 DICTIONARY TECHNIQUES

buffer. The distance of the pointer from the look-ahead buffer is called the offset. The encoder
then examines the symbols following the symbol at the pointer location to see if they match
consecutive symbols in the look-ahead buffer. The number of consecutive symbols in the
search buffer that match consecutive symbols in the look-ahead buffer, starting with the
first symbol, is called the length of the match. The encoder searches the search buffer for
the longest match. Once the longest match has been found, the encoder encodes it with a
triple (o, [, ¢}, where o is the offset, [is the length of the match, and ¢ is the codeword
corresponding to the symbol in the look-ahead buffer that follows the match. For example,
in Figure 5.1 the pointer is pointing to the beginning of the longest match. The offset o
in this case is 7, the length of the match [is 4, and the symbol in the look-ahead buffer
following the match is p.

The reason for sending the third element in the triple is to take care of the situation
where no match for the symbol in the look-ahead buffer can be found in the search buffer.
In this case, the offset and match-length values are set to 0, and the third element of the
triple is the code for the symbol itself.

If the size of the search buffer is S, the size of the window (search and look-ahead
buffers) is W, and the size of the source alphabet is A, then the number of bits needed to code
the triple using fixed-length codes is [log, S+ [log, W] + [log, A]. Notice that the second
term is [log, W1, not [log, ST. The reason for this is that the length of the match can actually
exceed the length of the search buffer. We will see how this happens in Example 5.4.1.

In the following example, we will iook at three different possibilities that may be
encountered during the coding process:

1. There is no match for the next character to be encoded in the window.
2. There is a match.

3. The matched string extends inside the look-ahead buffer.

Example 5.4.1: The LZ77 approach

Suppose the sequence to be encoded is
...cabracadabrarrarrad. . .

Suppose the length of the window is 13, the size of the look-ahead buffer is six, and the
current condition is as follows:

[cabraca l a'abrar‘

‘with dabrar in the look-ahead buffer. We look back in the already encoded portion of the
window to find a match for d. As we can see, there is no match, so we transmit the triple
(0,0, C(d)). The first two elements of the triple show that there is no match to d in the
search buffer, while C(d) is the code for the character d. This seems like a wasteful way to
encode a single character, and we will have more to say about this later.

5.4 Adaptive Dictionary 123

For now, let’s continue with the encoding process. As we have encoded a single character,
we move the window by one character. Now the contents of the buffer are

abracad l abrarr ‘

with abrarr in the look-ahead buffer. Looking back from the current location, we find a
match to a at an offset of two. The length of this match is one. Looking further back, we
have another match for « at an offset of four; again the length of the match is one. Looking
back even further in the window, we have a third match for a at an offset of seven. However,
this time the length of the match is four (see Figure 5.2). So we encode the string abra with
the triple (7,4, C(r)), and move the window forward by five characters. The window now
contains the following characters:

ladabrar I rarrad |

Now the look-ahead buffer contains the string rarrad. Looking back in the window, we find
a match for r at an offset of one and a match length of one, and a second match at an offset
of three with a match length of what at first appears to be three. It turns out we can use a
match length of five instead of three.

Search
pointer
- o=7 >
Y
cabracadahrdrr:drxad
________________ =]

FIGURE 5. 2 The encoding process.

Why this is so will become clearer when we decode the sequence. To see how the
decoding works, let us assume that we have decoded the sequence cabraca and we receive
the triples (0, 0, C(d)). (7.4, C(r)). and (3,5, C(d)). The first triple is easy to decode; there
was no match within the previously decoded string, and the next symbol is d. The decoded
string is now cabracad. The first element of the next triple tells the decoder to move the
copy pointer back seven characters, and copy four characters from that point. The decoding
process works as shown in Figure 5.3.

Finally, let’s see how the triple (3, 5, C(d)) gets decoded. We move back three characters
and start copying. The first three characters we copy are rar. The copy pointer moves once
again, as shown in Figure 5.4, to copy the recently copied character r. Similarly, we copy
the next character a. Even though we started copying only three characters back, we end
up decoding five characters. Notice that the match only has to start in the search buffer; it
can extend into the look-ahead buffer. In fact, if the last character in the look-ahead buffer

124 5 DICTIONARY TECHNIQUES

I S o
Lclafvrafc]a]d] lclafb[rfafcafd]a]

P ; P ;
Lelafo]r[afcJald]a b] lclalb[rfafcJafd]a b 1]

; --------------- ; Decode Cf(r) Al
[TalelrTale[elals ® v o] [elalolr ale s]ds b r a][r]

FIGURE 5.3 Decoding of the triple (7, 4, C(r)).

Move back 3 Copy 1

| P
poopnnn TP Talo o [T

E .

BOODGHEE BDODGOGEEN
P P
[a|b'alblrlalr[r a r r] LaLbla]blrlalrJr a r r a

Decode C(d)
Lalblalblrlalr[r a r r %

FIGURE 5.4 Decoding the triple (3, 5, Cld)).

5.4 Adaptive Dictionary 125

had been r instead of d, followed by several more repetitions of rar, the entire sequence of
repeated rars could have been encoded with a single triple. ¢

As we can see, the LZ77 scheme is a very simple adaptive scheme that requires no
prior knowledge of the source and seems to require no assumptions about the characteristics
of the source. The authors of this algorithm showed that asymptotically the performance
of this algorithm approached the best that could be obtained by using a scheme that had
full knowledge about the statistics of the source. While this may be true asymptotically, in
practice there are a number of ways of improving the performance of the LZ77 algorithm
as described here. Furthermore, by using the recent portions of the sequence, there is an
assumption of sorts being used here—that is, that patterns recur “close” together. As we
shall see, in LZ78 the authors removed this “assumption” and came up with an entirely
different adaptive-dictionary-based scheme. Before we get to that, let us look at the different
variations of the LZ77 algorithm.

Variations on the LZ77 Theme

There are a number of ways that the LZ77 scheme can be made more efficient, and most
of these have appeared in the literature. Many of the improvements deal with the efficient
encoding of the triples. In the description of the 1.Z77 algorithm, we assumed that the
triples were encoded using a fixed-length code. However, if we were willing to accept
more complexity, we could encode the triples using variable-length codes. As we saw in
earlier chapters, these codes can be adaptive or, if we were willing to use a two-pass
algorithm, they can be semiadaptive. Popular compression packages, such as PKZip, Zip,
LHarc, PNG, gzip, and ARJ, all use an LZ77-based algorithm followed by a variable-length
coder.

Other variations on the LZ77 algorithm include varying the size of the search and look-
ahead buffers. To make the search buffer large requires the development of more effective
search strategies. Such strategies can be implemented more effectively if the contents of the
search buffer are stored in a manner conducive to fast searches.

The simplest modification to the LZ77 algorithm, and one that is used by most variations
of the LZ77 algorithm, is to eliminate the situation where we use a triple to encode a single
character. Use of a triple is highly inefticient, especially if a large number of characters
occur infrequently. The modification to get rid of this inefficiency is simply the addition of
a flag bit, to indicate whether what follows is the codeword for a single symbol. By using
this flag bit we also get rid of the necessity for the third element of the triple. Now all
we need to do is to send a pair of values corresponding to the offset and length of match.
This modification to the LZ77 algorithm is referred to as LZSS [56, 57].

5.4.2 The LZ78 Approach

The LZ77 approach implicitly assumes that like patterns will occur close together. It makes
use of this structure by using the recent past of the sequence as the dictionary for encoding.

126 5 DICTIONARY TECHNIQUES

abcde f g h i a|b[cjd[e{f]g[h[1]J[bJC_’d[éI¥Tgnh i

Search buffer Look-ahead bufter

FIGURE 5. 5 The Achilles’ heel of L277.

However, this means that any pattern that recurs over a period longer than that covered
by the coder window will not be captured. The worst-case situation would be where the
sequence to be encoded was periodic with a period longer than the search buffer. Consider
Figure 5.5.

This is a periodic sequence with a period of nine. If the search buffer had been just one
symbol longer, this sequence could have been significantly compressed. As it stands, none
of the new symbols will have a match in the search buffer and will have to be represented
by separate codewords. As this involves sending along overhead (a 1-bit flag for LZSS and
a triple for the original LZ77 algorithm), the net result will be an expansion rather than a
compression.

Although this is an extreme situation. there are less drastic circumstances in which the
finite view of the past would be a drawback. The LZ78 algorithm solves this problem by
dropping the reliance on the search buffer and keeping an explicit dictionary. This dictionary
has to be built at both the encoder and decoder. and care must be taken that the dictionaries
are built in an identical manner. The inputs are coded as a double (i, ¢). with i being an
index corresponding to the dictionary entry that was the longest match to the input, and ¢
being the code for the character in the input following the matched portion of the input. As
in the case of LZ77, the index value of 0 is used in the case of no match. This double then
becomes the newest entry in the dictionary. Thus, each new entry into the dictionary is one
new symbol concatenated with an existing dictionary entry. To see how the LZ78 algorithm
works, consider the following example.

Example 5.4.2: The LZ78 approach

Let us encode the following sequence using the LZ78 approach:
wabbabwabbabwabbabwabbabwoobwoobwoo®

where b stands for space. Initially. the dictionary is empty, so the first few symbols encoun-
tered are encoded with the index value set to 0. The first three encoder outputs are (0, C(w)),
(0, C(a)), {0, C(b)), and the dictionary looks like Table 5.4.

The fourth symbol is a b, which is the third entry in the dictionary. If we append the
next symbol, we would get the pattern ba, which is not in the dictionary, so we encode
these two symbols as (3, C(a)), and add the pattern ba as the fourth entry in the dictionary.
Continuing in this fashion. the encoder output and the dictionary develop as in Table 5.5.
Notice that the entries in the dictionary generally keep getting longer, and if this particular

2 “The Monster Song” from Sesame Street.

5.4 Adaptive Dictionary 127

TABLE 5.4 The initial dictionary.

Index Entry
1 w
2 a
3 b

TABLE 5.5 Development of dictionary.

Dictionary
Encoder Output Index Entry
(0, C(w)) 1 w
(0. C(a)) 2 a
(0. C(b)) 3 b
(3. C(a)) 4 ba
(0. C#)) 5 b
(1. C(a)) 6 wa
(3. C(b)) 7 bb
(2, C(k)) 8 ab
(6.C(b)) 9 wab
(4. C(B)) 10 bah
(9. C(b)) 11 wabb
(8. C(w)) 12 abw
(0, C(0)) 13 o
(13.C(b)) 14 ob
(1. C(0)) 15 wo
(14. C(w)) 16 obw
(13, C(0)) 17 00

sentence was repeated often, as it is in the song, after a while the entire sentence would be
an entry in the dictionary. ¢

While the LZ78 algorithm has the ability to capture patterns and hold them indefinitely, it
also has a rather serious drawback. As seen from the example. the dictionary keeps growing
without bound. In a practical situation. we would have to stop the growth of the dictionary at
some stage. and then either prune it back or treat the encoding as a fixed dictionary scheme.
We will discuss some possible approaches when we study applications of dictionary coding.

Variations on the LZ78 Theme—The LZW Algorithm

There are a number of ways the LZ78 algorithm can be modified, and as is the case with the
LZ77 algorithm, anything that can be modified probably has been. The most well-known
modification. one that initially sparked much of the interest in the LZ algorithms, is a
modification by Terry Welch known as LZW [58]. Welch proposed a technique for removing

128 5 DICTIONARY TECHNIQUES

the necessity of encoding the second element of the pair (i, ¢). That is, the encoder would
only send the index to the dictionary. In order to do this, the dictionary has to be primed with
all the letters of the source alphabet. The input to the encoder is accumulated in a pattern
p as long as p is contained in the dictionary. If the addition of another letter « results in a
pattern pxa (* denotes concatenation) that is not in the dictionary, then the index of p is.
transmitted to the receiver, the pattern p*a is added to the dictionary, and we start another
pattern with the letter a. The LZW algorithm is best understood with an example. In the
following two examples, we will look at the encoder and decoder operations for the same
sequence used to explain the LZ78 algorithm.

Example 5.4.3: The LZW algorithm—encoding

We will use the sequence previously used to demonstrate the LZ78 algorithm as our input
sequence:

wabbabwabbabwabbabwabbabw oobwoobwoo

Assuming that the alphabet for the source is {b, a, b. 0, w}, the LZW dictionary initially
looks like Table 5.6.

TABLE 5.6 Initial LZW dictionary.

Index Entry
1 b
2 a
3 b
4 0
S w

The encoder first encounters the letter w. This “pattern™ is in the dictionary so we
concatenate the next letter to it, forming the pattern wa. This pattern is not in the dictionary.
so we encode w with its dictionary index 5, add the pattern wa to the dictionary as the sixth
element of the dictionary, and begin a new pattern starting with the letter a. As a is in the
dictionary, we concatenate the next element b to form the pattern ab. This pattern is not in
the dictionary, so we encode a with its dictionary index value 2, add the pattern ab to the
dictionary as the seventh element of the dictionary. and start constructing a new pattern with
the letter b. We continue in this manner, constructing two-letter patterns, until we reach
the letter w in the second wabba. At this point the output of the encoder consists entirely
of indices from the initial dictionary: 5 2 3 3 2 1. The dictionary at this point looks like
Table 5.7. (The 12th entry in the dictionary is still under construction.) The next symbol in
the sequence is a. Concatenating this to w, we get the pattern wa. This pattern already exists
in the dictionary (item 6), so we read the next symbol, which is b. Concatenating this to
wa, we get the pattern wab. This pattern does not exist in the dictionary, so we include it as
the 12th entry in the dictionary and start a new pattern with the symbol b. We also encode

5.4 Adaptive Dictionary 129

wa with its index value of 6. Notice that after a series of two-letter entries. we now have
a three-letter entry. As the encoding progresses, the length of the entries keeps increasing.
The longer entries in the dictionary indicate that the dictionary is capturing more of the
structure in the sequence. The dictionary at the end of the encoding process is shown in
Table 5.8. Notice that the 12th through the 19th entries are all either three or four letters in
length. Then we encounter the pattern woo for the first time and we drop back to two-letter
patterns for three more entries, after which we go back to entries of increasing length.

TABLES.7 Constructing the 12th entry
of the LZW dictionary.

Index Entry
1 b
2 a
3 b
4 0
5 w
6 wa
7 ab
8 bb
9 ba
10 ab
11 bw
12 w...

TABLE 5.8 The LZW dictionary for encoding
wabbalwabbakwabbalwabbalivoolwoolwoo.

Index Entry Index Entry
i b 14 abw
2 a 15 wabb
3 b 16 bab
4 0 17 bwa
5 w 18 abb
6 wa 19 bapw
7 ab 20 wo
8 bb 21 00
9 ba 22 ob
10 ab 23 Bwo
11 bw 24 ook
12 wab 25 Bwoo
13 bba

The encoder output sequence is 52332168 1012911716544 11 21 23 4. ¢

130 5 DICTIONARY TECHNIQUES

Example 5.4.4: The LZW algorithm—decoding

In this example we will take the encoder output from the previous example and decode it
using the LZW algorithm. The encoder output sequence in the previous example was

5233216810129117165441121234

This becomes the decoder input sequence. The decoder starts with the same initial dictionary
as the encoder (Table 5.6).

The index value 5'corresp0nds to the letter w, so we decode w as the first element of
our sequence. At the same time, in order to mimic the dictionary construction procedure
of the encoder, we begin construction of the next element of the dictionary. We start with
the letter w. This pattern exists in the dictionary, so we do not add it to the dictionary
and continue with the decoding process. The next decoder input is 2, which is the index
corresponding to the letter a. We decode an a and concatenate it with our current pattern to
form the pattern wa. As this does not exist in the dictionary, we add it as the sixth element.
of the dictionary and start a new pattern beginning with the letter a. The next four inputs
332 1 correspond to the letters bbab and generate the dictionary entries ab, bb, ba, and
ab. The dictionary now looks like Table 5.9, where the 11th entry is under construction.

TABLES5.9 Constructing the 1 1th entry of the
LZW dictionary while decoding.

Index Entry
| b
2 a
3 b
4 0
5 w
6 wa
7 ab
8 bb
9 ha
10 ab
11 k...

The next input is 6, which is the index of the pattern wa. Therefore, we decode a w
and an a. We first concatenate w to the existing pattern, which is A. and form the pattern
Bw. As Bw does not exist in the dictionary, it becomes the 11th entry. The new pattern now
starts with the letter w. We had previously decoded the letter @, which we now concatenate
to w to obtain the pattern wa. This pattern is contained in the dictionary, so we decode the
next input, which is 8. This corresponds to the entry bb in the dictionary. We decode the
first b and concatenate it to the pattern wa to get the pattern wab. This pattern does not exist
in the dictionary, so we add it as the 12th entry in the dictionary and start a new pattern
with the letter b. Decoding the second b and concatenating it to the new pattern, we get
the pattern bb. This pattern exists in the dictionary, so we decode the next element in the

5.4 Adaptive Dictionary 131

sequence of encoder outputs. Continuing in this fashion, we can decode the entire sequence.
Notice that the dictionary being constructed by the decoder is identical to that constructed
by the encoder. ¢

There is one particular situation in which the method of decoding the LZW algorithm
described above breaks down. Suppose we had a source with an alphabet A = {a, b}, and
we were to encode the sequence beginning with abababab. . .. The encoding process is
still the same. We begin with the initial dictionary shown in Table 5.10 and end up with the
final dictionary shown in Table 5.11.

The transmitted sequence is 1 2 3 5.... This looks like a relatively straightforward
sequence to decode. However, when we try to do so, we run into a snag. Let us go through
the decoding process and see what happens.

We begin with the same initial dictionary as the encoder (Table 5.10). The first two
elements in the received sequence 1 23 5. .. are decoded as a and b, giving rise to the third
dictionary entry ab, and the beginning of the next pattern to be entered in the dictionary, b.
The dictionary at this point is shown in Table 5.12.

TABLE 5.10 Initial dictionary for
abababab.

Index Entry

1 a

2 b

TABLE 5.11 Final dictionary for
abababab.

Index Entry

a
b

ab
ba
aba
abab

N -

~N N A

TABLE 5.12 Constructing the fourth entry of
the dictionary while decoding.

Index Entry
1 a
2 b
3 ab
4 b...

132 5 DICTIONARY TECHNIQUES

TABLE 5.13 Constructing the fifth
entry (stage one).

Index Entry
1 a
2 b
3 ab
4 ba
5 a.

TABLE 5.14 Constructing the fifth
entry (stage two).

Index Entry
1 a
2 h
3 ab
4 ba

"
i
=

The next input to the decoder is 3. This corresponds to the dictionary entry ab. Decoding
each in turn. we first congatenate a to the pattern under construction to get ba. This pattern
is not contained in the dictionary. so we add this to the dictionary (keep in mind. we have
not used the b from ab yet), which now looks like Table 5.13.

The new entry starts with the letter ¢. We have only used the first letter from the pair
ab. Therefore. we now concatenate b to a to obtain the pattern ¢b. This pattern is contained
in the dictionary, so we continue with the decoding process. The dictionary at this stage
looks like Table 5.14.

The first four entries in the dictionary are complete, while the fifth entry is stll under
construction. However, the very next input to the decoder is 5. which corresponds to the
incomplete entry! How do we decode an index for which we do not as yet have a complete
dictionary entry”?

The situation is actaally not as bad as it looks. {Of course. if it were. we would not now
he studying LZW.) While we may not have a fifth eniry for the dictionary. we do have the
beginnings of the fifth entrv. which is ab. ... Let us. tor the moment. pretend that we do
indeed have the fifth entry and continue with the decoding process. If we had a fifth entry.
the first two letters of the entry would be @ and b. Concatenating « to the partial new entry
we get the pattern aba. This pattern is not contained in the dictionary. so we add this o
our dictionary. which now looks like Table 5.15. Notice that we now have the fifth entry in
the dictionary. which is aba. We have already decoded the ab portion of uba. We can now
decode the last letter ¢ and continue on our merry way.

This means that the LZW decoder has to contain an exception handler to handle the
special case of decoding an index that does not have a corresponding complete entry in the
decoder dictionary.

5.5 Applications 133

TABLE 5.15 Completion of
the fifth entry.

Index Entry
1 a
2 b
3 ab
4 ba
5 aba
6 a. ..

5.5 Applications

Since the publication of Terry Welch's article [S8]. there has been u steadily increasing
number of applications that use some variant of the LZ78 algorithm. Among the LZ78
variants, by far the most popular is the LZW algorithm. In this section we desceribe two of
the best-known applications of LZW: GIF. and V.42 bis. While the LZW algorithm was
initially the algorithm of choice patent concerns has lead to increasing use of the 1LZ77
algorithm. The most popular implementation of the LZ77 algorithm is the deflate algorithm
initially designed by Phil Katz. It is part of the popular z/ib library developed by Jean-loup
Gailly and Mark Adler. Jean-loup Gailly also used deflate in the widely used ¢zip algorithm.
The deflate algorithm is also used in PNG which we describe below.

5.5.1 File Compression—UNIX compress

The UNIX compress command is one of the carlier applications of LZW. The size of the
dictionary is adaptive. We start with a dictionary of size 512, This means that the transmitted
codewords are 9 bits long. Once the dictionary has filled up. the size of the dictionary is
doubled to 1024 entries. The codewords transmitted at this point have 10 bits. The size of
the dictionary is progressively doubled as it fills up. In this way. during the carlier part of
the coding process when the strings in the dictionary are not very long, the codewords used
to encode them also have fewer bits. The maximum size of the codeword, b, (. can be set
by the user to between 9 und 16, with 16 bits being the detault. Once the dictionary contains
2™ entries. compress becomes a static dictionary coding technique. At this point the
algorithm momtors the compression ratio. I the compression ratio fulls below a threshold,
the dictionary is flushed. and the dictionary building process is restarted. This way. the
dictionary always reflects the local characteristics ot the source.

5.5.2 Image Compression—The Graphics
Interchange Format (GIF)

The Graphics Interchange Format (GIF) was developed by Compuserve Information Service
to encode graphical images. It is another implementation of the LZW algorithm and is very
similar to the compress command. The compressed image is stored with the first byte

134 5 DICTIONARY TECHNIQUES

TABLE 5.16 Comparison of GIF with arithmetic

coding.
Arithmetic Coding Arithmetic Coding
Image GIF of Pixel Values of Pixel Differences
Sena 51,085 53.431 31.847
Sensin 60,649 58.306 37.126
Earth 34.276 38.248 32.137
Omaha 61,580 56.061 51.393

being the minimum number of bits b per pixel in the original image. For the images we
have been using as examples. this would be eight. The binary number 2” is defined to be the
clear code. This code is used to reset all compression and decompression parameters to a
start-up state. The initial size of the dictionary is 2°*'. When this fills up. the dictionary size
is doubled, as was done in the compress algorithm, until the maximum dictionary size
of 4096 is reached. At this point the compression algorithm behaves like a static dictionary
algorithm. The codewords from the LZW algorithm are stored in blocks of characters. The
characters are 8 bits long. and the maximum block size is 255. Each block is preceded by a
header that contains the block size. The block is terminated by a block terminator consisting
of eight Os. The end of the compressed image is denoted by an end-of-information code with
a value of 2" + 1. This codeword should appear before the block terminator.

GIF has become quite popular for encoding all kinds of images. both computer-generated
and “natural” images. Whjle GIF works well with computer-generated graphical images, and
pseudocolor or color-mapped images, it is generally not the most efficient way to losslessly
compress images of natural scenes, photographs. satellite images, and so on. In Table 5.16
we give the file sizes for the GIF-encoded test images. For comparison. we also include the
file sizes for arithmetic coding the original images and arithmetic coding the differences.

Notice that even if we account for the extra overhead in the GIF files, for these images
GIF barely holds its own even with simple arithmetic coding of the original pixels. While
this might seem odd at first, if we examine the image on a pixel level. we see that there are
very few repetitive patterns compared to a text source. Some images, like the Earth image,
contain large regions of constant values. In the dictionary coding approach, these regions
become single entries in the dictionary. Therefore. for images like these, the straight forward
dictionary coding approach does hold its own. However, for most other images. it would
probably be preferable to perform some preprocessing to obtain a sequence more amenable
to dictionary coding. The PNG standard described next takes advantage of the fact that
in natural images the pixel-to-pixel variation is generally small to develop an appropriate
preprocessor. We will also revisit this subject in Chapter 7.

5.5.3 Image Compression—Portable Network
Graphics (PNG)

The PNG standard is one of the first standards to be collaboratively developed over the
Internet. The impetus for it was an announcement in December 1994 by Unisys (which had
acquired the patent for LZW from Sperry) and CompuServe that they would start charging

5.5 Applications 135

royalties to authors of software that included support for GIF. The announcement resulted in
an uproar in the segment of the compression community that formed the core of the Usenet
group comp.compression. The community decided that a patent-free replacement for GIF
should be developed, and within three months PNG was born. (For a more detailed history
of PNG as well as software and much more, go to the PNG website maintained by Greg
Roelof, http://www.libpng.org/pub/png/.)

Unlike GIF, the compression algorithm used in PNG is based on LZ77. In particular,
it is based on the deflate [59] implementation of LZ77. This implementation allows for
match lengths of between 3 and 258. At each step the encoder examines three bytes. If it
cannot find a match of at least three bytes it puts out the first byte and examines the next
three bytes. So, at each step it either puts out the value of a single byte, or literal, or the pair
< match length, offset >. The alphabets of the literal and match length are combined to
form an alphabet of size 286 (indexed by 0 — —285). The indices 0 — —255 represent literal
bytes and the index 256 is an end-of-block symbol. The remaining 29 indices represent
codes for ranges of lengths between 3 and 258, as shown in Table 5.17. The table shows
the index, the number of selector bits to follow the index. and the lengths represented by
the index and selector bits. For example, the index 277 represents the range of lengths from
67 to 82. To specify which of the sixteen values has actually occurred, the code is followed
by four selector bits.

The index values are represented using a Huffman code. The Huffman code is specified
in Table 5.18.

The offset can take on values between 1 and 32.768. These values are divided into
30 ranges. The thirty range values are encoded using a Huffman code (different from the
Huftman code for the literal and length values) and the code is followed by a number of
selector bits to specify the particular distance within the range.

We have mentioned earlier that in natural images there is not great deal of repetition of
sequences of pixel values. However, pixel values that are spatially close also tend to have
values that are similar. The PNG standard makes use of this structure by estimating the
value of a pixel based on its causal neighbors and subtracting this estimate from the pixel.
The difference modulo 256 is then encoded in place of the original pixel. There are four
different ways of getting the estimate (five if you include no estimation), and PNG allows

TABLE 5.17 Codes for representations of maich length [59].

Index # of selector bits Length | Index # of selector bits Length | Index # of selector bits Length
257 0 3] 267 1 15.16 | 277 4 67-82
258 0 4 | 268 1 17.18 278 4 83-98
259 0 5] 269 2 19-22 | 279 4 99-114
260 0 6 | 270 2 23-26 | 280 4 115-130
261 0 71 271 2 27-30 | 281 5 131-162
262 0 8 1 272 2 31-34 | 282 5 163-194
263 0 9 | 273 3 3542 | 283 5 195-226
264 0 10 | 274 3 43-50 | 284 5 227-257
265 1 11,12 | 275 3 51-58 | 285 0 258
266 l 13. 14 | 276 3 59-66

136 5 DICTIONARY TECHNIQUES

TABLE 5.18 Huffman codes for the
match length alphabet [59].

Index Ranges # of bits Binary Codes

0—1-43 & 00110000 through
[VIBRURD

1442255 Y 110010000 through
ERERERY

236074 7 0000000 through
001071

280287 ¥ 1 1000000 through

00011

TABLE 5.19 Comparison of PNG with GIF and erithmetic coding.

Arithmetic Coding Arithmetic Coding
Image PNG GIF of Pixel Values of Pixel Ditferences
Sena 31.577 51.085 53431 31847
Sensin 24,488 60.649 58.306 37.126
Earth 26.995 34276 IR 32,137
Onmaha 50.185 61.580 50.001 51393

the use of a different method of estimation for each row. The first way is to use the pixel
from the row above as the estimate. The second method is to use the pixel to the left as the
estimate. The third method uses the average of the pixel above and the pixel to the left. The
final method is a bit more complex. An initial estimate of the pixel is first made by adding
the pixel to the left and the pixel above and subtracting the pixel to the upper left. Then the
pixel that is clesest to the initial esitmate (upper. left. or upper left) is taken as the estimate.
A comparison of the performance of PNG and GIF on our standard image set 1s shown in
Table 5.19. The PNG method clearly outpertorms GIF.

5.5.4 Compression over Modems~—V.42 bis

The ITU-T Recommendation V.42 bis is a compression standard devised for use over a
telephone network along with error-correcting procedures described in CCITT Recommen-
dation V.42. This algorithm is used in modems connecting computers to remote users. The
algorithm described in this recommendation operates in two modes. a transparent mode and
it compressed mode. In the transparent mode. the data are transmitted in uncompressed form,
while in the compressed mode an LZW algorithm is used to provide compression.

The reason for the existence of two modes is that at imes the data being transmitted do
not have repetitive structure and therefore cannot be compressed using the LZW algorithm.
In this case, the use of a compression algorithm may even result in expansion. In these
situations. it is better to send the data in an uncompressed form. A random data stream
would cause the dictionary to grow without any long patterns as elements of the dictionary.
This means that most of the time the transmitted codeword would represent a single letter

5.5 Applications 137

from the source alphabet. As the dictionary size is much larger than the source alphabet
size, the number of bits required to represent an clement in the dictionary is much more than
the number of bits required to represent a source letter. Therefore. if we tried to compress
a sequence that does not contain repeating patterns, we would end up with more bits to
transmit than if we had not performed any compression. Data without repetitive structure are
often encountered when a previously compressed file is trunsferred over the telephone lines.

The V.42 bis recommendation suggests periodic testing of the output of the compression
algorithm to see if duta expansion is taking place. The exact nature of the test is not specified
in the recommendation.

In the compressed mode. the system uses LZW compression with a variable-size dictio-
nary. The initial dictionary size is negotiated at the time a link is established between the
transmitter and receiver. The V.42 bis recommendation suggests a value of 2048 for the
dictionary size. It specifies that the minimum size of the dictionary is to be 512. Suppose
the initial negotiations resuit in a dictionary size of 512. This means that our codewords that
are indices into the dictionary will be 9 bits long. Actually. the entire 512 indices do not
correspond to input strings: three entries in the dictionary are reserved for control codewords.
These codewords in the compressed mode are shown in Table 5.20.

When the numbers of entries in the dictionary exceed a prearranged threshold C,. the
encoder sends the STEPUP control code. and the codeword size is incremented by 1 bit.
At the same time, the threshold Cy is also doubled. When all available dictionary entries
are filled, the algorithm initiates a reuse procedure. The location of the first string entry in
the dictionary is maintained in a variable ;. Starting from N, a counter C, is incremented
until it finds a dictionary entry that is not a prefix to any other dictionary entry. The fact
that this entry is not a prefix to another dictionary entry means that this pattern has not been
encountered since it was created. Furthermore. because of the way it was located, among
patterns of this kind this pattern has been around the longest. This reuse procedure cnables
the algorithm to prune the dictionary of strings that may have been encountered in the past
but have not heen cncountered recently. on a continual basis. In this way the dictionary is
always matched to the current source statistics.

To reduce the effect of errors, the CCITT recommends setting a maximum string length.
This maximum length is negotiated at link setup. The CCITT recommends a range of 6-250.
with a default value of 6.

The V.42 bis recommendation avoids the need for an exception handler for the case
where the decoder receives a codeword corresponding to an incomplete entry by forbidding
the use of the last entry in the dictionary. Instead of transmitting the codeword corresponding
to the last entry. the recommendation requires the sending of the codewords corresponding

TABLE 5.20 Control codewords in
compressed mode.

Codeword Name Description
0 ETM Enter transparent mode
| FLUSH Flush data
0

STEPUP Increment codeword size

138 5 DICTIONARY TECHNIQUES

to the constituents of the last entry. In the example used to demonstrate this quirk of the
LZW algorithm, instead of transmitting the codeword 5, the V.42 bis recommendation would
have forced us to send the codewords 3 and 1.

5.6 Summary

In this chapter we have introduced techniques that keep a dictionary of recurring patterns
and transmit the index of those patterns instead of the patterns themselves in order to achieve
compression. There are a number of ways the dictionary can be constructed.

@ In applications where certain patterns consistently recur, we can build application-
specific static dictionaries. Care should be taken not to use these dictionaries outside
their area of intended application. Otherwise, we may end up with data expansion
instead of data compression.)

B The dictionary can be the source output itself. This is the approach used by the LZ77
algorithm. When using this algorithm, there is an implicit assumption that recurrence
of a pattern is a local phenomenon.

W This assumption is removed in the LZ78 approach, which dynamically constructs a
dictionary from patterns observed in the source output.

Dictionary-based algorithms are being used to compress all kinds of data; however, care
should be taken with their use. This approach is most useful when structural constraints
restrict the frequently occurring patterns to a small subset of all possible patterns. This is
the case with text, as well as computer-to-computer communication.

Further Reading

1. Text Compression, by T.C. Bell, J.G. Cleary, and L.H. Witten [1], provides an excellent
exposition of dictionary-based coding techniques.

2. The Data Compression Book, by M. Nelson and J.-L. Gailley [60], also does a good
job of describing the Ziv-Lempel algorithms. There is also a very nice description of
some of the software implementation aspects.

3. Data Compression, by G. Held and T.R. Marshall [61], contains a description of
digram coding under the name “diatomic coding.” The book also includes BASIC
programs that help in the design of dictionaries.

4. The PNG algorithm is described in a very accessible manner in “PNG Lossless
Compression,” by G. Roelofs [62] in the Lossless Compression Handbook.

5. A more in-depth look at dictionary compression is provided in “Dictionary-Based Data
Compression: An Algorithmic Perspective,” by S.C. Sahinalp and N.M. Rajpoot [63]
in the Lossless Compression Handbook.

5.7 Projects and Problems 139

5.7 Projects and Problems

To study the effect of dictionary size on the efficiency of a static dictionary technique,
we can modify Equation (5.1) so that it gives the rate as a function of both p and
the dictionary size M. Plot the rate as a function of p for different values of M. and
discuss the trade-offs involved in selecting larger or smaller values of M.

Design and implement a digram coder for text files of interest to you.

{a) Study the effect of the dictionary size. and the size of the text file being encoded
on the amount of compression.

{b} Use the digram coder on files that are not similar to the ones you used to design
the digram coder. How much does this affect your compression?

Given an initial dictionary consisting of the letters a b r v B, encode the following
message using the LZW algorithm: abbarBarraybbybbarrayvarbbay.

A sequence is encoded using the LZW algorithm and the initial dictionary shown in
Table 5.21.

TABLE 5. 21 Initial dictionary
for Problem 4.

Index Entry
1 a
2 b
3 h
4 i
5 s
6

(a) The output of the LZW encoder is the following sequence:

634115231629i11‘1612144201082313

Decode this sequence.

{b) Encode the decoded sequence using the same initial dictionary. Does your answer
match the sequence given above?

A sequence is encoded using the LZW algorithm and the initial dictionary shown in
Table 5.22. ‘

(a) The output of the LZW encoder is the following sequence:

L314628421i2j510611]36

Decode this sequence.

140

5 DICTIONARY TECHNIQUES

TABLE 5.22 Initial dictionary
for Problem 5.

Index Entry

a
b
r
14

BN -

{b) Encode the decoded sequence using the same initial dictionary. Does your answer
match the sequence given above?

Encode the following sequence using the LZ77 algorithm:
barrayarbbarbbybbarrayarbbay

Assume you have a window size of 30 with a look-ahead buffer of size 15. Furthermore,
assume that C(a) = 1, C(b) =2, C(B) =3, C(r) =4, and C(y) =5.

A sequence is encoded using the LZ77 algorithm. Given that C(a) = 1, C(¥) = 2,
C(r) =3, and C(r) = 4, decode the following sequence of triples:

(0,0,3) (0,0,1) (0,0,4) (2,8,2) (3,1,2) (0,0,3) (6,4,4) (9,5.4)

Assume that the size of the window is 20 and the size of the look-ahead buffer is 10.
Encode the decoded sequence and make sure you get the same sequence of triples.

Given the following primed dictionary and the received sequence below, build an
LZW dictionary and decode the transmitted sequence.

Received Sequence: 4, 5,3,1,2,8,2,7,9,7, 4

Decoded Sequence:

Initial dictionary:
{a) S
(b) p
{e) I
(d} T
{e) H

Contexi-Based Compression

6.1 Overview

n this chapter we present a number of techniques that use minimal prior
assumptions about the statistics of the data. Instead they use the context of the
data being encoded and the past history of the data to provide more efficient
compression. We will look at a number of schemes that are principally used
for the compression of text. These schemes use the context in which the data
occurs in different ways.

6.2 Introduction

In Chapters 3 and 4 we learned that we get more compression when the message that is
being coded has a more skewed set of probabilities. By “skewed” we mean that certain
symbols occur with much higher probability than others in the sequence to be encoded. So
it makes sense to look for ways to represent the message that would result in greater skew.
One very effective way to do so is to look at the probability of occurrence of a letter in the
context in which it occurs. That is, we do not look at each symbol in a sequence as if it
had just happened out of the blue. Instead, we examine the history of the sequence before
determining the likely probabilities of different values that the symbol can take.

In the case of English text, Shannon [8] showed the role of context in two very interesting
experiments. In the first, a portion of text was selected and a subject (possibly his wife,
Mary Shannon) was asked to guess each letter. If she guessed correctly, she was told that
she was correct and moved on to the next letter. If she guessed incorrectly, she was told
the correct answer and again moved on to the next letter. Here is a result from one of these
experiments. Here the dashes represent the letters that were correctly guessed.

142 6 CONTEXT-BASED COMPRESSION

Actual Text THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG
Subject Performance ROO NOT_V I SM _OBL_ _ _

Notice that there is a good chance that the subject will guess the letter, especially if the
letter is at the end of a word or if the word is clear from the context. If we now represent
the original sequence by the subject performance, we would get a very different set of
probabilities for the values that each element of the sequence takes on. The probabilities are
definitely much more skewed in the second row: the “letter” _ occurs with high probability.
If a mathematical twin of the subject were available at the other end, we could send the
“reduced” sentence in the second row and have the twin go through the same guessing
process to come up with the original sequence.

In the second experiment, the subject was allowed to continue guessing until she had
guessed the correct letter and the number of guesses required to correctly predict the letter
was noted. Again, most of the time the subject guessed correctly, resulting in 1 being the
most probable number. The existence of a mathematical twin at the receiving end would
allow this skewed sequence to represent the original sequence to the receiver. Shannon used
his experiments to come up with upper and lower bounds for the English alphabet (1.3 bits
per letter and 0.6 bits per letter, respectively).

The difficulty with using these experiments is that the human subject was much better
at predicting the next letter in a sequence than any mathematical predictor we can develop.
Grammar is hypothesized to be innate to humans [64], in which case development of a
predictor as efficient as a human for language is not possible in the near future. However,
the experiments do provide an approach to compression that is useful for compression of all
types of sequences, not simply language representations.

If a sequence of symbols being encoded does not consist of independent occurrences
of the symbols, then the knowledge of which symbols have occurred in the neighborhood
of the symbol being encoded will give us a much better idea of the value of the symbol
being encoded. If we know the context in which a symbol occurs we can guess with a much
greater likelihood of success what the value of the symbol is. This is just another way of
saying that, given the context, some symbols will occur with much higher probability than
others. That is, the probability distribution given the context is more skewed. If the context
is known to both encoder and decoder, we can use this skewed distribution to perform the
encoding, thus increasing the level of compression. The decoder can use its knowledge of
the context to determine the distribution to be used for decoding. If we can somehow group
like contexts together, it is quite likely that the symbols following these contexts will be the
same, allowing for the use of some very simple and efficient compression strategies. We
can see that the context can play an important role in enhancing compression, and in this
chapter we will look at several different ways of using the context.

Consider the encoding of the word probability. Suppose we have already encoded the
first four letters, and we want to code the fifth letter, a. If we ignore the first four letters,
the probability of the letter a is about 0.06. If we use the information that the previous letter
is b, this reduces the probability of several letters such as ¢ and z occurring and boosts
the probability of an a occurring. In this example, b would be the first-order context for
a, ob would be the second-order context for a, and so on. Using more letters to define the
context in which a occurs, or higher-order contexts, will generally increase the probability

6.3 Prediction with Partial Match (ppm) 143

of the occurrence of a in this example, and hence reduce the number of bits required to
encode its occurrence. Therefore, what we would like to do is to encode each letter using
the probability of its occurrence with respect to a context of high order.

If we want to have probabilities with respect to all possible high-order contexts, this
might be an overwhelming amount of information. Consider an alphabet of size M. The
number of first-order contexts is M, the number of second-order contexts is M2, and so en.
Therefore, if we wanted to encode a sequence from an alphabet of size 256 using contexts
of order 5, we would need 256°, or about 1.09951 x 10'> probability distributions! This is
not a practical alternative. A set of algorithms that resolve this problem in a very simple and
elegant way is based on the prediction with partial match (ppm) approach. We will describe
this in the next section.

6.3 Prediction with Partial Match (ppm)

The best-known context-based algorithm is the ppm algorithm, first proposed by Cleary and
Witten [65] in 1984. It has not been as popular as the various Ziv-Lempel-based algorithms
mainly because of the faster execution speeds of the latter algorithms. Lately, with the
development of more efficient variants, ppm-based algorithms are becoming increasingly
more popular.

The idea of the ppm algorithm is elegantly simple. We would like to use large contexts to
determine the probability of the symbol being encoded. However, the use of large contexts
would require us to estimate and store an extremely large number of conditional probabilities,
which might not be feasible. Instead of estimating these probabilities ahead of time, we can
reduce the burden by estimating the probabilities as the coding proceeds. This way we only
need to store those contexts that have occurred in the sequence being encoded. This is a
much smaller number than the number of all possible contexts. While this mitigates the
problem of storage, it also means that, especially at the beginning of an encoding, we will
need to code letters that have not occurred previously in this context. In order to handle
this situation, the source coder alphabet always contains an escape symbol, which is used to
signal that the letter to be encoded has not been seen in this context.

6.3.1 The Basic Algorithm

The basic algorithm initially attempts to use the largest context. The size of the largest
context is predetermined. If the symbol to be encoded has not previously been encountered in
this context, an escape symbol is encoded and the algorithm attempts to use the next smaller
context. If the symbol has not occurred in this context either, the size of the context is further
reduced. This process continues until either we obtain a context that has previously been
encountered with this symbol, or we arrive at the conclusion that the symbol has not been
encountered previously in anv context. In this case. we use a probability of 1/M to encode
the symbol, where M is the size of the source alphabet. For example, when coding the a
of probability, we would first attempt to see if the string proba has previously occurred—
that is. if a had previously occurred in the context of prob. If not, we would encode an

144 6 CONTEXT-BASED COMPRESSION

escape and see if a had occurred in the context of rob. If the string roba had not occurred
previously, we would again send an escape symbol and try the context ob. Continuing in
this manner, we would try the context b, and failing that, we would see if the letter a (with a
zero-order context) had occurred previously. If @ was being encountered for the first time,
we would use a model in which all letters occur with equal probability to encode a. This
equiprobable model is sometimes referred to as the context of order —1.

As the development of the probabilities with respect to each context is an adaptive
process, each time a symbol is encountered, the count corresponding to that symbol is
updated. The number of counts to be assigned to the escape symbol is not obvious, and a
number of different approaches have been used. One approach used by Cleary and Witten is
to give the escape symbol a count of one, thus inflating the total count by one. Cleary and
Witten call this method of assigning counts Method A, and the resulting algorithm ppma.
We will describe some of the other ways of assigning counts to the escape symbol later in
this section.

Before we delve into some of the details, let’s work through an example to see how
all this works together. As we will be using arithmetic coding to encode the symbols, you
might wish to refresh your memory of the arithmetic coding algorithms.

Example 6.3.1:

Let’s encode the sequence
thisbisbthebtithe

Assuming we have already encoded the initial seven characters rhisbhis, the various counts
and Cum_Count arrays to be used in the arithmetic coding of the symbols are shown in
Tables 6.1-6.4. In this example, we are assuming that the longest context length is two. This
is a rather small value and is used here to keep the size of the example reasonably small.
A more common value for the longest context length is five.

We will assume that the word length for arithmetic coding is six. Thus, = 000000 and
u=111111. As rhisbis has already been encoded, the next letter to be encoded is B. The
second-order context for this letter is is. Looking at Table 6.4, we can see that the letter b

TABLE 6.1 Count array for —1 order context.

Letter Count Cum_Count

t 1 1
h 1 2
i 1 3
K 1 4
e 1 5
b 1 6

Total Count 6

6.3 Prediction with Partial Match {ppm) 145

TABLE 6.2 Count array for zero-order context.

Letter Count Cum_Count
t 1 1
h 1 2
i 2 4
s 2 6
] 1 7
(Esc) 1 8
Total Count 8

TABLE 6.3 Count array for first-order contexis.

Context Letter Count Cum_Count

t h 1 1
(Esc) 1 2

Total Count 2

h i 1 1
(Esc) 1 2

Total Count 2

i s 2 2
(Esc) 1 3

Total Count 3

b { 1 1
(Esc) 1 2

Total Count 2

s b 1 1
(Esc) 1 2

Total Count 2

is the first letter in this context with a Cum_Count value of 1. As the Total_Count in this
case is 2, the update equations for the lower and upper limits are

0
| = O+{(63—0+1) x EJ = 0 = 000000

1
u =0+{(63—0+1)x§"—1=31=011111.

146 6 CONTEXT-BASED COMPRESSION

TABLE 6.4 Count array for second-order contexts.

Context Letter Count Cum_Count

th i 1 1
(Esc) 1 2

Total Count

893

hi s 1
(Esc) 1

|

2

Total Count 2

is b 1 1
(Esc) 1 2

Total Count 2

sb i i 1
(Esc) 1 2

Total Count 2

bi s 1 1
(Esc) 1 2

Total Count 2

As the MSBs of both / and u are the same, we shift that bit out, shift a 0 into the LSB of /,
and a | into the LSB of u. The transmitted sequence, lower limit, and upper limit after the
update are

Transmitted sequence : 0
[000000
w: 111111

We also update the counts in Tables 6.2-6.4.

The next letter to be encoded in the sequence is 7. The second-order context is sb.
Looking at Table 6.4, we can see that ¢ has not appeared before in this context. We therefore
encode an escape symbol. Using the counts listed in Table 6.4, we update the lower and
upper limits:

o1
| = 0+[(63—()—F1)x ;J = 32 = 100000

Ve

2
14=()+\\(63—0+1)ngI:63:]]1Hl.

6.3 Prediction with Partial Match (ppm) 147

Again, the MSBs of / and u are the same, so we shift the bit out and shift 0 into the LSB of
[, and 1 into u, restoring / to a value of 0 and « to a value of 63. The transmitted sequence
is now 01. After transmitting the escape. we look at the first-order context of t, which is B.
Looking at Table 6.3, we can see that 7 has not previously occurred in this context. To let
the decoder know this, we transmit another escape. Updating the limits, we get

1
l = 0+{(63—()+l) X ;J = 32 = 100000

,

u= 0+L(63#0+1)x§J—1:63:111111.

As the MSBs of [and u are the same, we shift the MSB out and shift 0 into the LSB of /
and 1 into the LSB of u. The transmitted sequence is now 011. Having escaped out of the
first-order contexts, we examine Table 6.5, the updated version of Table 6.2, to see if we
can encode t using a zero-order context. Indeed we can, and using the Cum_Count array.
we can update / and u:

0
I = 0+|f63—0+1)>< §J = 0 = 000000

l
u = 0+[(63“0+1)X6J_1=6=000“0‘

TABLE 6.5 Updated count array for
zero-order context.

Letter Count Cum_Count
t 1 1
h 1 2
[2 4
s 2 6
b 2 8
(Esc) 1 9
Total Count 9

The three most significant bits of both / and u are the same, so we shift them out. After the
update we get
Transmitted sequence : 011000
[: 000000
w: 110111

148 6 CONTEXT-BASED COMPRESSION

The next letter to be encoded is h. The second-order context ¢ has not occurred previ-
ously, so we move directly to the first-order context r. The letter / has occurred previously
in this context, so we update [and u and obtain

Transmitted sequence : 0110000
/: 000000

u: 110101

TABLE 6.6 Count array for zero-order context.

Letter Count Cum_Count
t 2 2
h 2 4
i 2 6
s 2 8
b 2 10
(Esc) 1 11
Total Count 11

TABLE 6.7 Count array for first-order contexts.

Context Letter Count Cum_Count
t h 2 2
(Esc) 1 3
Total Count 3
h i 1 1
(Esc) 1 2
Total Count 2
i s 2 2
(Esc) 1 3
Total Count 3
b [1 1
t 1 2
(Esc) 1 3
Total Count 3
s b 2
(Esc) 1

w w9

Total Count

6.3 Prediction with Partial Match (ppm) 149

TABLE 6.8 Count array for second-order confexts.

Context Letter Count Cum_Count
th i 1 1
(Esc) 1 2
Total Count 2
hi s 1 1
(Esc) 1 2

~

Total Count

is b 2 2
(Esc) 1 3

Total Count 3

sk i 1 1
t 1 2

(Esc) 1 3

Total Count 3

bi s 1 1
(Esc) 1 2

Total Count 2

Bt h 1 1
(Esc) 1 2

Total Count 2

The method of encoding should now be clear. At this point the various counts are as
shown in Tables 6.6-6.8. ¢

Now that we have an idea of how the ppm algorithm works, let's examine some of the
variations.

6.3.2 The Escape Symbol

In our example we used a count of one for the escape symbol, thus inflating the total count in
each context by one. Cleary and Witten call this Method A, and the corresponding algorithm
is referred to as ppma. There is really no obvious justification for assigning a count of one
to the escape symbol. For that matter, there is no obvious method of assigning counts to the
escape symbol. There have been various methods reported in the literature.

Another method described by Cleary and Witten is to reduce the counts of each symbol
by one and assign these counts to the escape symbol. For example. suppose in a given

150 6 CONTEXT-BASED COMPRESSION

TABLE 6.9 Counts using Method A.

Context Symbol Count
prob a 10
I} 9
0 3
(Esc) 1
Total Count 23

TABLE 6.10 Counts using Method B.

Context Symbol Count
prob a 9
! 8
0 2
(Esc) 3

[8]
[8}

Total Count

sequence a occurs 10 times in the context of prob, ! occurs 9 times, and o occurs 3 times
in the same context (e.g., problem, proboscis, etc.). In Method A we assign a count of one
to the escape symbol, resulting in a total count of 23, which is one more than the number of
times prob has occurred. The situation is shown in Table 6.9.

In this second method, known as Method B, we reduce the count of each of the symbols
a, l, and o by one and give the escape symbol a count of three, resulting in the counts shown
in Table 6.10. _

The reasoning behind this approach is that if in a particular context more symbols can
occur, there is a greater likelihood that there is a symbol in this context that has not occurred
before. This increases the likelihood that the escape symbol will be used. Therefore, we
should assign a higher probability to the escape symbol.

A variant of Method B, appropriately named Method C, was proposed by Moffat [66].
In Method C, the count assigned to the escape symbol is the number of symbols that have
occurred in that context. In this respect, Method C is similar to Method B. The difference
comes in the fact that, instead of “robbing” this from the counts of individual symbols, the
total count is inflated by this amount. This situation is shown in Table 6.11.

While there is some variation in the performance depending on the characteristics of the
data being encoded, of the three methods for assigning counts to the escape symbol, on the
average, Method C seems to provide the best performance.

6.3.3 Length of Context

It would seem that as far as the maximum length of the contexts is concerned, more is
better. However, this is not necessarily true. A longer maximum length will usually result

6.3 Prediction with Partial Match (ppm) 151

TABLE G6.11 Counts using Method C.

Context Symbol Count
prob a 10
l 9
0 3
(Esc) 3
Total Count 25

in a higher probability if the symbol to be encoded has a nonzero count with respect to
that context. However, a long maximum length also means a higher probability of long
sequences of escapes, which in turn can increase the number of bits used to encode the
sequence. If we plot the compression performance versus maximum context length, we
see an initial sharp increase in performance until some value of the maximum length,
followed by a steady drop as the maximum length is further increased. The value at which
we see a downturn in performance changes depending on the characteristics of the source
sequence.

An alternative to the policy of a fixed maximum length is used in the algorithm ppm*
[67]. This algorithm uses the fact that long contexts that give only a single prediction are
seldom followed by a new symbol. If mike has always been followed by y in the past, it
will probably not be followed by b the next time it is encountered. Contexts that are always
followed by the same symbol are called deterministic contexts. The ppm* algorithm first
looks for the longest deterministic context. If the symbol to be encoded does not occur in that
context, an escape symbol is encoded and the algorithm defaults to the maximum context
length. This approach seems to provide a small but significant amount of improvement over
the basic algorithm. Currently, the best variant of the ppm* algorithm is the ppmz algorithm
by Charles Bloom. Details of the ppmz algorithm as well as implementations of the algorithm
can be found at http://www.cbloom.com/src/ppmz.html.

6.3.4 The Exclusion Principle

The basic idea behind arithmetic coding is the division of the unit interval into subintervals,
each of which represents a particular letter. The smaller the subinterval, the more bits are
required to distinguish it from other subintervals. If we can reduce the number of symbols
to be represented, the number of subintervals goes down as well. This in turn means that
the sizes of the subintervals increase, leading to a reduction in the number of bits required
for encoding. The exclusion principle used in ppm provides this kind of reduction in rate.
Suppose we have been compressing a text sequence and come upon the sequence proba,
and suppose we are trying to encode the letter a. Suppose also that the state of the two-letter
context ob and the one-letter context b are as shown in Table 6.12.

First we attempt to encode a with the two-letter context. As a does not occur in this
context, we issue an escape symbol and reduce the size of the context. Looking at the table
for the one-letter context b, we see that a does occur in this context with a count of 4 out of a
total possible count of 21. Notice that other letters in this context include / and o. However,

152 6 CONTEXT-BASED COMPRESSION

TABLE 6.12 Counts for exclusion

example.
Context Symbol Count
ob l 10
o 3
(Esc) 2
Total Count 15
b l 5
0 3
a 4
r 2
e 2
(Esc) 5
Total Count 21

TABLE 6.13 Modified table vsed for
exclusion example.

Context Symbol Count
b a 4
r 2
e 2
(Esc) 3
Total Count 11

by sending the escape symbol in the context of 0b, we have already signalled to the decoder
that the symbol being encoded is not any of the letters that have previously been encountered
in the context of ob. Therefore, we can increase the size of the subinterval corresponding
to a by temporarily removing / and o from the table. Instead of using Table 6.12, we use
Table 6.13 to encode a. This exclusion of symbols from contexts on a temporary basis can
result in cumulatively significant savings in terms of rate.

You may have noticed that we keep talking about small but significant savings. In lossless
compression schemes, there is usually a basic principle, such as the idea of prediction with
partial match, followed by a host of relatively small modifications. The importance of these
modifications should not be underestimated because often together they provide the margin
of compression that makes a particular scheme competitive.

6.4 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) algorithm also uses the context of the symbol
being encoded, but in a very different way, for lossless compression. The transform that

6.4 The Burrows-Wheeler Transform) 153

is a major part of this algorithm was developed by Wheeler in 1983. However, the BWT
compression algorithm, which uses this transform, saw the light of day in 1994 [68]. Unlike
most of the previous algorithms we have looked at, the BWT algorithm requires that the
entire sequence to be coded be available to the encoder before the coding takes place. Also,
unlike most of the previous algorithms, the decoding procedure is not immediately evident
once we know the encoding procedure. We will first describe the encoding procedure: If
it is not clear how this particular encoding can be reversed, bear with us and we will get
to 1t.

The algorithm can be summarized as follows. Given a sequence of length N, we create
N — 1 other sequences where each of these N — 1 sequences is a cyclic shift of the original
sequence. These N sequences are arranged in lexicographic order. The encoder then transmits
the sequence of length N created by taking the last letter of each sorted, cyclically shifted,
sequence. This sequence of last letters L, and the position of the original sequence in the
sorted list, are coded and sent to the decoder. As we shall see, this information is sufficient
to recover the original sequence.

We start with a sequence of length N and end with a representation that contains
N +1 elements. However, this sequence has a structure that makes it highly amenable to
compression. In particular we will use a method of coding called move-to-front (mtf), which
is particularly effective on the type of structure exhibited by the sequence L.

Before we describe the muf approach, let us work through an example to generate the L
sequence. ‘

Example 6.4.1:

Let’s encode the sequence
thisbisbthe

We start with all the cyclic permutations of this sequence. As there are a total of 11 characters,
there are 11 permutations, shown in Table 6.14.

TABLE 6.14 Permutations of thiskiskthe.

O ¢+ h i s b i s B t h e
1 h @i s b @ s B t h e t
2 4 s B i s B t h e t h
3 s b i s B t h e t h |
4 b i s B t h e t h i s
S i s B t h e t h i s b
6 s b t+ h e t h i s b i
7 6 t h e t h i s b i s
8 + h e t h i s b i s b
9 h e t h i § B i s b 1t
10 e ¢+ h { s B i s B 1t h

154 6 CONTEXT-BASED COMPRESSION

TABLE 6.15 Sequences sorted into
lexicographic order.

0 8 i s b t h e t h ils)]
1 b t h e t h i s b i| s

2 e t h i s B i s B t|h

3 h e t h i s b i s b1t

4 h 1 s B i s b t h et

5 i s b i s B t h e t|h

6 i s b t h e t h 1 s |b

7 s b i s b t h e t h| i

8 s b t h e t h i s b i

9 t h e t h @ s B I s |6k

0 ¢« h i s B 1@ s B t h|e]

Now let’s sort these sequences in lexicographic (dictionary) order (Table 6.15). The
sequence of last letters L in this case is

L : sshtthbiibe

Notice how like letters have come together. If we had a longer sequence of letters, the runs
of like letters would have been even longer. The mif algorithm, which we will describe later,
takes advantage of these runs.

The original sequence appears as sequence number 10 in the sorted list, so the encoding
of the sequence consists of the sequence L and the index value 10. ¢

Now that we have an encoding of the sequence, let’s see how we can decode the
original sequence by using the sequence L and the index to the original sequence in the
sorted list. The important thing to note is that all the elements of the initial sequence are
contained in L. We just need to figure out the permutation that will let us recover the original
sequence.

The first step in obtaining the permutation is to generate the sequence F' consisting of
the first element of each row. That is simple to do because we lexicographically ordered the
sequences. Therefore, the sequence F is simply the sequence L in lexicographic order. In
our example this means that F is given as

F:bBbehhiisstt

We can use L and F to generate the original sequence. Look at Table 6.15 containing
‘the cyclically shifted sequences sorted in lexicographic order. Because each row is a cyclical
shift, the letter in the first column of any row is the letter appearing after the last column
in the row in the original sequence. If we know that the original sequence is in the k"
row, then we can begin unraveling the original sequence starting with the k" element
of F.

6.4 The Burrows-Wheeler Transform

Example 6.4.2:

In our example

i
i
s
s
!
t

A N~ IS = 4 9

155.

the original sequence is sequence number 10, so the first letter in of the original sequence is
F{10] = 1. To find the letter following r we look for ¢ in the array L. There are two t’s in L.
Which should we use? The ¢ in F that we are working with is the lower of two t’s, so we
pick the lower of two #’s in L. This is L[4]. Therefore. the next letter in our reconstructed
sequence is F[4] = h. The reconstructed sequence to this point is th. To find the next letter,
we look for h in the L array. Again there are two h's. The h at Fl4]is the lower of two
h’s in F, so we pick the lower of the two A’s in L. This is the fifth element of L, so the
next element in our decoded sequence is F{5] = i. The decoded sequence to this point is thi.

The process continues as depicted in Figure 6.1 to generate the original sequence.

0 ,b(<>———as

10 tb—————JL’

FIGURE 6. 1 Decoding process.

156 6 CONTEXT-BASED COMPRESSION

Why go through all this trouble? After all, we are going from a sequence of length N to
another sequence of length N plus an index value. It appears that we are actually causing
expansion instead of compression. The answer is that the sequence L can be compressed
much more efficiently than the original sequence. Even in our small example we have runs
of like symbols. This will happen a lot more when N is large. Consider a large sample of
text that has been cyclically shifted and sorted. Consider all the rows of A beginning with
heb. With high probability heb would be preceded by r. Therefore, in L we would get a
long run of zs.

6.4.1 Move-to-Front Coding

A coding scheme that takes advantage of long runs of identical symbols is the move-to-front
(mtf) coding. In this coding scheme, we start with some initial listing of the source alphabet.
The symbol at the top of the list is assigned the number 0, the next one is assigned the
number 1, and so on. The first time a particular symbol occurs, the number corresponding
to its place in the list is transmitted. Then it is moved to the top of the list. If we have a
run of this symbol, we transmit a sequence of Os. This way, long runs of different symbols
get transformed to a large number of 0s. Applying this technique to our example does not
produce very impressive results due to the small size of the sequence, but we can see how
the technique functions.

Example 6.4.3:

Let’s encode L = sshtthbiibe. Let's assume that the source alphabet is given by
A=1{b.e h i s 1}

We start out with the assignment

K
blel|l hii]|s]|t

9
(O8]
EN
N

The first element of L is s. which gets encoded as a 4. We then move s to the top of the
list, which gives us

011

)
[o8)
N
)

ishelzi!

The next s is encoded as 0. Because s is already at the top of the list. we do not need to .
make any changes. The next letter is A, which we encode as 3. We then move 4 to the top
of the list:

6.5 Associative Coder of Buyanovsky (ACB) 157

The next letter is also a 1, so that gets encoded as a 0.
Continuing in this fashion, we get the sequence

40350135015

As we warned, the results are not too impressive with this small sequence, but we can see
how we would get large numbers of Os and small values if the sequence to be encoded was
longer. ¢

6.5 Associative Coder of Buyanovsky (ACB)

A different approach to using contexts for compression is employed by the eponymous
compression utility developed by George Buyanovsky. The details of this very efficient coder
are not well known; however, the way the context is used is interesting and we will briefly
describe this aspect of ACB. More detailed descriptions are available in [69] and [70]. The
ACB coder develops a sorted dictionary of all encountered contexts. In this it is similar to
other context based encoders. However, it also keeps track of the contents of these contexts.
The content of a context is what appears after the context. [n a traditional left-to-right reading
of text, the contexts are unbounded to the left and the contents to the right (to the limits
of text that has already been encoded). When encoding the coder searches for the longest
match to the current context reading right to left. This again is not an unusual thing to do.
What is interesting is what the coder does after the best match is found. Instead of simply
examining the content corresponding to the best matched context, the coder also examines
the contents of the coders in the neighborhood of the best matched contexts. Fenwick [69]
describes this process as first finding an anchor point then searching the contents of the
neighboring contexts for the best match. The location of the anchor point is known to both
the encoder and the decoder. The location of the best content match is signalled to the
decoder by encoding the offset & of the context of this content from the anchor point. We
have not specified what we mean by “best” match. The coder takes the utilitarian approach
that the best match is the one that ends up providing the most compression. Thus, a longer
match farther away from the anchor may not be as advantageous as a shorter match closer
to the anchor because of the number of bits required to encode 8. The length of the match
\ is also sent to the decoder.

158 6 CONTEXT-BASED COMPRESSION

The interesting aspect of this scheme is that it moves away from the idea of exactly
matching the past. It provides a much richer environment and flexibility to enhance the
compression and will, hopefully, provide a fruitful avenue for further research.

6.6 Dynamic Markov Compression

Quite often the probabilities of the value that the next symbol in a sequence takes on depend
not only on the current value but on the past values as well. The ppm scheme relies on
this longer-range correlation. The ppm scheme, in some sense, reflects the application, that
is, text compression, for which it is most used. Dynamic Markov compression (DMC),
introduced by Cormack and Horspool [71], uses a more general framework to take advantage
of relationships and correlations, or contexts, that extend beyond a single symbol.

Consider the sequence of pixels in a scanned document. The sequence consists of runs
of black and white pixels. If we represent black by 0 and white by 1, we have runs of Os
and Is. If the current value is 0, the probability that the next value is O is higher than if
the current value was 1. The fact that we have two different sets of probabilities is reflected
in the two-state model shown in Figure 6.2. Consider state A. The probability of the next
value being 1 changes depending on whether we reached state A from state B or from state
A itself. We can have the model reflect this by cloning state A, as shown in Figure 6.3, to
create state A'. Now if we see a white pixel after a run of black pixels, we go to state A’
The probability that the next value will be 1 is very high in this state. This way, when we
estimate probabilities for the next pixel value, we take into account not only the value of
the current pixel but also the value of the previous pixel.

This process can be continued as long as we wish to take into account longer and longer
histories. “As long as we wish” is a rather vague statement when it comes to implementing
the algorithm. In fact, we have been rather vague about a number of implementation issues.
We will attempt to rectify the situation.

There are a number of issues that need to be addressed in order to implement this
algorithm:

1. What is the initial number of states?

2. How do we estimate probabilities?

FIGURE 6. 2 A two-state model for binary sequences.

6.6 Dynamic Markov Compression 159

FIGURE 6.3 A three-state model obtained by cloning.

3. How do we decide when a state needs to be cloned?

4. What do we do when the number of states becomes too large?

Let’s answer each question in turn.

We can start the encoding process with a single state with two self-loops for 0 and 1.
This state can be cloned to two and then a higher number of states. In practice it has been
found that, depending on the particular application, it is more efficient to start with a larger
number of states than one.

The probabilities from a given state can be estimated by simply counting the number of
times a 0 or a 1 occurs in that state divided by the number of times the particular state is
occupied. For example, if in state V the number of times a 0 occurs is denoted by n} and
the number of times a 1 occurs is denoted by n}, then

Il(")/

POV) = ng +ny
v
ny

What if a 1 has never previously occurred in this state? This approach would assign a
probability of zero to the occurrence of a 1. This means that there will be no subinterval
assigned to the possibility of a I occurring, and when it does occur, we will not be able to
represent it. In order to avoid this, instead of counting from zero, we start the court of 1s
and Os with a small number ¢ and estimate the probabilities as

n! +c
PO|V) = 20—
1) ny +n¥ +2c

nY+c
P(1|V) = I

ny +nY +2c¢

160 6 CONTEXT-BASED COMPRESSION

FIGURE 6. 4 The cloning process.

Whenever we have two branches leading to a state, it can be cloned. And, theoretically,
cloning is never harmful. By cloning we are providing additional information to the encoder.
This might not reduce the rate, but it should never result in an increase in the rate. However,
cloning does increase the complexity of the coding, and hence the decoding, process. In
order to control the increase in the number of states, we should only perform cloning when
there is a reasonable expectation of reduction in rate. We can do this by making sure that
both paths leading to the state being considered for cloning are used often enough. Consider
the situation shown in Figure 6.4. Suppose the current state is A and the next state is C. As
there are two paths entering C, C is a candidate for cloning. Cormack and Horspool suggest
that C be cloned if nj > T, and nf > T,, where T, and T, are threshold values set by the
user. If there are more than three paths leading to a candidate for cloning, then we check
that both the number of transitions from the current state is greater than 7, and the number
of transitions from all other states to the candidate state is greater than T,.

Finally, what do we do when, for practical reasons, we cannot accommodate any more
states? A simple solution is to restart the algorithm. In order to make sure that we do not
start from ground zero every time, we can train the initial state configuration using a certain
number of past inputs.

6.7 Summary

The context in which a symbol occurs can be very informative about the value that the
symbol takes on. If this context is known to the decoder then this information need not be
encoded: it can be inferred by the decoder. In this chapter we have looked at several creative
ways in which the knowledge of the context can be used to provide compression.

6.8 Projects and Problems 161

Further Reading

2.

The basic ppm algorithm is described in detail in Teyr Compression, by T.C. Bell,
J.G. Cleary, and I.H. Witten [1].

For an excellent description of Burrows-Wheeler Coding, including methods of imple-
mentation and improvements to the basic algorithm, see “Burrows-Wheeler Compres-
sion,” by P. Fenwick [72] in Lossless Compression Handbook.

The ACB algorithm is described in “Symbol Ranking and ACB Compression,” by
P. Fenwick [69] in the Lossless Compression Handbook. and in Data Compression:
The Complete Reference by D. Salomon [70]. The chapter by Fenwick also explores
compression schemes based on Shannon’s experiments.

6.8 Projects and Problems

2.

Decode the bitstream generated in Example 6.3.1. Assume you have already decoded
thisBis and Tables 6.1-6.4 are available to you.

Given the sequence thebbetabcarbatebthebcetabhar:

(a) Encode the sequence using the ppma algorithm and an adaptive arithmetic coder.
Assume a six-letter alphabet {h, e.1, a, ¢, B}.

{b) Decode the encoded sequence.

Given the sequence etabcetabandbbetabeeta:

(a) Encode using the Burrows-Wheeler transform and move-to-front coding.
{b) Decode the encoded sequence.

A sequence is encoded using the Burrows-Wheeler transform. Given I — elbkkee,
and index = 5 (we start counting from 1. not 0), find the original sequence.

Lossless Image Compression

7.1 Overview

n this chapter we examine a number of schemes used for lossless compression
of images. We will look at schemes for compression of grayscale and color
images as well as schemes for compression of binary images. Among these
schemes are several that are a part of international standards.

7.2 Introduction

In the previous chapters we have focused on compression techniques. Although some of
them may apply to some preferred applications, the focus has been on the technique rather
than on the application. However, there are certain techniques for which it is impossible
to separate the technique from the application. This is because the techniques rely upon
the properties or characteristics of the application. Therefore, we have several chapters in
this book that focus on particular applications. In this chapter we will examine techniques
specifically geared toward lossless image compression. Later chapters will examine speech,
audio, and video compression.

In the previous chapters we have seen that a more skewed set of probabilities for the
message being encoded results in better compression. In Chapter 6 we saw how the use of
context to obtain a skewed set of probabilities can be especially effective when encoding
text. We can also transform the sequence (in an invertible fashion) into another sequence
that has the desired property in other ways. For example, consider the following sequence:

t20s]7]a]2]0l-s Aﬂ—l V217]-a]2]1]3 4]

164 7 LOSSLESS IMAGE COMPRESSION

If we consider this sample to be fairly typical of the sequence, we can see that the probability
of any given number being in the range from —7 to 7 is about the same. If we were to
encode this sequence using a Huffman or arithmetic code. we would use almost 4 bits per
symbol.

Instead of encoding this sequence directly, we could do the following: add two to the
previous number in the sequence and send the difference between the current element in the
sequence and this predicted value. The transmitted sequence would be

14110—7—40—7000—5i—7‘,1010*1

This method uses a rule (add two) and the history (value of the previous symbol) to generate
the new sequence. If the rule by which this residual sequence was generated is known to
the decoder, it can recover the original sequence from the residual sequence. The length
of the residual sequence is the same as the original sequence. However, notice that the
residual sequence is much more likely to contain Os, ls, and —Is than other values. That is,
the probability of 0, 1, and —1 will be significantly higher than the probabilities of other
numbers. This, in turn, means that the entropy of the residual sequence will be low and,
therefore, provide more compression.

We used a particular method of prediction in this example (add two to the previous
element of the sequence) that was specific to this sequence. In order to get the best possible
performance, we need to find the prediction approach that is best suited to the particular
data we are dealing with. We will look at several prediction schemes used for lossless image
compression in the following sections.

7.2.1 The Old JPEG Standard

The Joint Photographic Experts Group (JPEG) is a joint ISO/ITU committee responsible
for developing standards for continuous-tone still-picture coding. The more famous standard
produced by this group is the lossy image compression standard. However, at the time of the
creation of the famous JPEG standard, the committee also created a lossless standard [73].
At this time the standard is more or less obsolete, having been overtaken by the much more
efficient JPEG-LS standard described later in this chapter. However, the old JPEG standard
is still useful as a first step into examining predictive coding in images.

The old JPEG lossless still compression standard {73] provides eight different predictive
schemes from which the user can select. The first scheme makes no prediction. The next
seven are listed below. Three of the seven are one-dimensional predictors, and four are
two-dimensional prediction schemes. Here, /(i, j) is the (i, j)th pixel of the original image,
and j(i, J) is the predicted value for the (i, j)th pixel.

1 1G,)) = Ii—1.)) (7.1
2 16 j) = I, j—1) (7.2)
3 1G,))=1i—1,j-1) (7.3)
4 16.j) =1, j—D+Ii—1,)—1(i—1.j-1) (7.4)

7.2 Introduction 165

S 1)) =16 j—D+UG—1.)—1(i-1,j-1))/2 (7.5)
6 1(i.j)=I(i-1,)+UGj—1)—Ii~1,j—1))/2 (7.6)
7 1G.)) = (UG j—1D)+1(i—1.))/2 (7.7)

Different images can have different structures that can be best exploited by one of these
eight modes of prediction. If compression is performed in a nonreal-time environment—for
example, for the purposes of archiving—all eight modes of prediction can be tried and the
one that gives the most compression is used. The mode used to perform the prediction can
be stored in a 3-bit header along with the compressed file. We encoded our four test images
using the various JPEG modes. The residual images were encoded using adaptive arithmetic
coding. The results are shown in Table 7.1.

The best results—that is, the smallest compressed file sizes—are indicated in bold in
the table. From these results we can see that a different JPEG predictor is the best for the
different images. In Table 7.2, we compare the best JPEG results with the file sizes obtained
using GIF and PNG. Note that PNG also uses predictive coding with four possible predictors.
where each row of the image can be encoded using a different predictor. The PNG approach
is described in Chapter 5.

Even if we take into account the overhead associated with GIF, from this comparison
we can see that the predictive approaches are generally better suited to lossless image
compression than the dictionary-based approach when the images are “‘natural” gray-scale
images. The situation is different when the images are graphic images or pseudocolor images.
A possible exception could be the Earth image. The best compressed file size using the
second JPEG mode and adaptive arithmetic coding is 32,137 bytes, compared to 34,276
bytes using GIF. The difference between the file sizes is not significant. We can see the
reason by looking at the Earth image. Note that a significant portion of the image is the

TABLE 7.1 Compressed file size in bytes of the residual images obtained using
the various JPEG prediction modes.

Image JPEGO JPEG1 JPEG2 JPEG3 JPEG4 JPEG5 JPEG6 JPEG7

Sena 53,431 37.220 31,559 38,261 31,055 29,742 33.063 32,179
Sensin 58.306 41.298 37.126 43.445 32,429 33,463 35.965 36,428
Earth 38.248 32.295 32,137 34.089 33,570 33,057 33,072 32,672
Omaha 56.061 48,818 51.283 53.909 53,771 53.520 52,542 52,189

TABLE 7.2 Comparison of the file sizes
obtained using JPEG lossless
compression, GIF, and PNG.

Image Best JPEG GIF PNG
Sena 31,055 51.085 31,577
Sensin 32,429 60,649 34,488
Earth 32.137 34,276 26.995

Omaha 48.818 61,341 50,185

166 7 LOSSLESS IMAGE COMPRESSION

background, which is of a constant value. In dictionary coding, this would result in some
very long entries that would provide significant compression. We can see that if the ratio of
background to foreground were just a little different in this image, the dictionary method in
GIF might have outperformed the JPEG approach. The PNG approach which allows the use
of a different predictor (or no predictor) on each row, prior to dictionary coding significantly
outperforms both GIF and JPEG on this image.

7.3 CALIC

The Context Adaptive Lossless Image Compression (CALIC) scheme, which came into
being in response to a call for proposal for a new lossless image compression scheme in
1994 [74, 75], uses both context and prediction of the pixel values. The CALIC scheme
actually functions in two modes, one for gray-scale images and another for bi-level images.
In this section, we will concentrate on the compression of gray-scale images.

In an image, a given pixel generally has a value close to one of its neighbors. Which
neighbor has the closest value depends on the local structure of the image. Depending on
whether there is a horizontal or vertical edge in the neighborhood of the pixel being encoded,
the pixel above, or the pixel to the left, or some weighted average of neighboring pixels may
give the best prediction. How close the prediction is to the pixel being encoded depends
on the surrounding texture. In a region of the image with a great deal of variability, the
prediction is likely to be further from the pixel being encoded than in the regions with less
variability.

In order to take into account all these factors, the algorithm has to make a determination
of the environment of the pixel to be encoded. The only information that can be used to
make this determination has to be available to both encoder and decoder.

Let’s take up the question of the presence of vertical or horizontal edges in the neigh-
borhood of the pixel being encoded. To help our discussion, we will refer to Figure 7.1. In
this figure, the pixel to be encoded has been marked with an X. The pixel above is called
the north pixel, the pixel to the left is the west pixel, and so on. Note that when pixel X is
being encoded, all other marked pixels (N, W. NW, NE, WW, NN, NE, and NNE) are
available to both encoder and decoder.

NN | NNE

NW | N NE

WW | W X

FIGURE 7. 1 Labeling the neighbors of pixel X.

7.3 CALIC 167

We can get an idea of what kinds of boundaries may or may not be in the neighborhood
of X by computing

d, = |W—WW|+|N — NW|+ |NE — N|
d, = |W—=NW|+|N — NN| + |NE — NNE| .

The relative values of d, and d, are used to obtain the initial prediction of the pixel X.
This initial prediction is then refined by taking other factors into account. If the value of d,
is much higher than the value of d,, this will mean there is a large amount of horizontal
variation, and it would be better to pick N to be the initial prediction. If, on the other hand,
d, is much larger than d,, this would mean that there is a large amount of vertical variation,
and the initial prediction is taken to be W. If the differences are more moderate or smaller,
the predicted value is a weighted average of the neighboring pixels.

The exact algorithm used by CALIC to form the initial prediction is given by the
following pseudocode:

ifd,—d,> 80
X«N

else if d, —d,, > 80
X—w

else

{

X « (N+W)/2+ (NE — NW)/4
ifd,—d,>32
X< (X+N)2
else if d, —d, > 32
X< X+w)2
else if d, —d, > 8
X —BX+N)/4
elseif d, —d, > 8
X < (3X+wy/a
}

Using the information about whether the pixel values are changing by large or small
amounts in the vertical or horizontal direction in the neighborhood of the pixel being encoded
provides a good initial prediction. In order to refine this prediction, we need some information
about the interrelationships of the pixels in the neighborhood. Using this information, we
can generate an offset or refinement to our initial prediction. We quantify the information
about the neighborhood by first forming the vector

[N, W, NW, NE. NN, WW, 2N — NN.2W — WW]

We then compare each component of this vector with our initial prediction X. If the value
of the component is less than the prediction, we replace the value with a 1; otherwise

168 7 LOSSLESS IMAGE COMPRESSION

we replace it with a 0. Thus, we end up with an eight-component binarv vector. If each
component of the binary vector was independent, we would end up with 256 possible vectors.
However, because of the dependence of various components, we actually have 144 possible
configurations. We also compute a quantity that incorporates the vertical and horizontal
variations and the previous error in prediction by

d=d,+d +2|N-N| {7.8)

where N is the predicted value of N. This range of values of 3 is divided into four intervals,
each being represented by 2 bits. These four possibilities, along with the 144 texture
descriptors, create 144 x 4 = 576 contexts for X. As the encoding proceeds, we keep track
of how much prediction error is generated in each context and offset our initial prediction
by that amount. This results in the final predicted value.

Once the prediction is obtained. the difference between the pixel value and the prediction
(the prediction error, or residual) has to be encoded. While the prediction process outlined
above removes a lot of the structure that was in the original sequence, there is still some
structure left in the residual sequence. We can take advantage of some of this structure by
coding the residual in terms of its context. The context of the residual is taken to be the
value of & defined in Equation (7.8). In order to reduce the complexity of the encoding,
rather than using the actual value as the context. CALIC uses the range of values in which
o lies as the context. Thus:

0<® < g, = Context |
g, <8 < ¢, = Context 2
g, <d < g, = Context 3

gy <d < g, Context 4

gy <8 < gs = Context 5

Context 7

=
=N

gs <d < g, = Context 6
o <0 < q; =
=

g, <8 < gy Context 8
The values of g,—¢g; can be prescribed by the user.

If the original pixel values lie between 0 and M — 1, the differences or prediction residuals
will lie between —(M — 1) and M — I. Even though most of the differences will have a
magnitude close to zero, for arithmetic coding we still have to assign a count to all possible
symbols. This means a reduction in the size of the intervals assigned to values that do occur,
which in turn means using a larger number of bits to represent these values. The CALIC
algorithm attempts to resolve this problem in a number of ways. Let’s describe these using
an example.

7.3 CALIC 169

Consider the sequence
x,:0,7,4,3,5 2, 1,7

We can see that all the numbers lie between 0 and 7, a range of values that would require
3 bits to represent. Now suppose we predict a sequence element by the previous element in
the sequence. The sequence of differences

Fp = Xp =Xy
is given by

r,:0,7, =3, —1,2, =3, -1, 6

n

If we were given this sequence. we could easily recover the original sequence by using
Xy = Xp + Ty

However, the prediction residual values r, lie in the [~7, 7] range. That is, the alphabet
required to represent these values is almost twice the size of the original alphabet. However,
if we look closely we can see that the value of r, actually lies between ~x,_yand 7—ux,_,.
The smallest value that r, can take on occurs when x, has a value of 0, in which case r,
will have a value of —x, _,. The largest value that r, can take on occurs when x, is 7, in
which case r, has a value of 7—x,_,. In other words, given a particular value for X,_;, the
number of different values that r, can take on is the same as the number of values that X,
can take on. Generalizing from this, we can see that if a pixel takes on values between 0
and M — 1, then given a predicted value X, the difference X — X will take on values in the
range —X to M —1—X. We can use this fact to map the difference values into the range
[0, M — 1], using the following mapping:

X415 25+1
X+2 > 2k+2

M—1-X > M—1

where we have assumed that X < (M — 1)/2.

170 7 LOSSLESS IMAGE COMPRESSION

Another approach used by CALIC to reduce the size of its alphabet is to use a modifi-
cation of a technique called recursive indexing [76]. Recursive indexing is a technique for
representing a large range of numbers using only a small set. It is easiest to explain using an
example. Suppose we want to represent positive integers using only the integers between 0
and 7—that is, a representation alphabet of size 8. Recursive indexing works as follows: If
the number to be represented lies between 0 and 6, we simply represent it by that number.
If the number to be represented is greater than or equal to 7, we first send the number 7,
subtract 7 from the original number, and repeat the process. We keep repeating the process
until the remainder is a number between 0 and 6. Thus, for example, 9 would be represented
by 7 followed by a 2, and 17 would be represented by two 7s followed by a 3. The decoder,
when it sees a number between 0 and 6. would decode it at its face value. and when it
saw 7, would keep accumulating the values until a value between () and 6 was received.
This method of representation followed by entropy coding has been shown to be optimal for
sequences that follow a geometric distribution [77].

In CALIC, the representation alphabet is different for different coding contexts. For each
coding context k, we use an alphabet A, = {0, 1, ..., N, }. Furthermore, if the residual occurs
in context k, then the first number that is transmitted is coded with respect to context k; if
further recursion is needed, we use the k41 context.

We can summarize the CALIC algorithm as follows:

1. Find initial prediction X.

2. Compute prediction context.

3. Refine prediction by removing the estimate of the bias in that context.
4. Update bias estimate.

5. Obtain the residual and remap it so the residual values lie between 0 and M — 1, where
M 1is the size of the initial alphabet.

6. Find the coding context k.
7. Code the residual using the coding context.

All these components working together have kept CALIC as the state of the art in lossless
image compression. However, we can get almost as good a performance if we simplify some
of the more involved aspects of CALIC. We study such a scheme in the next section.

7.4 JPEG-LS

The JPEG-LS standard looks more like CALIC than the old JPEG standard. When the initial
proposals for the new lossless compression standard were compared. CALIC was rated first
in six of the seven categories of images tested. Motivated by some aspects of CALIC. a team
from Hewlett-Packard proposed a much simpler predictive coder. under the name LLOCO-1
(for low complexity). that still performed close to CALIC [78].

As in CALIC. the standard has both a lossless and a lossy mode. We will not describe
the lossy coding procedures.

7.4 JPEG-LS 171

The initial prediction is obtained using the following algorithm:

if NW > max(W, N)

X = max(W, N)

else

{
if NW < min(W, N)
X = min(W, N)
else

X=W+N - NW

}

This prediction approach is a variation of Median Adaptive Prediction [79], in which the
predicted value is the median of the N. W, and NW pixels. The initial prediction is then
refined using the average value of the prediction error in that particular context.

The contexts in JPEG-LS also reflect the local variations in pixel values. However, they
are computed differently from CALIC. First. measures of differences D,, D,. and D, are
computed as follows:

D, = NE-N
D, = N —NW
D, = NW—W.

The values of these differences define a three-component context vector Q. The components
of Q (Q,, Q,. and Q;) are defined by the following mappings:
D <-T,= Q,=-4
-T<D <-T, = Q,=-3
-, <D, <-T = Q,=-2
~-T, <D, <0 = Q,=~-1
D,=0= Q,=0
0<D <T, = 0, =1
T, <D, <T, = Q,=2
I<D =<T;= Q=3
Ty<D = Q=4 (7.9)
where T, T, and T; are positive coefficients that can be defined by the user. Given nine
possible values for each component of the context vector, this results in 9 x 9 x 9 = 729

possible contexts. In order to simplify the coding process, the number of contexts is reduced
by replacing any context vector Q whose first nonzero element is negative by —Q. Whenever

172 7 LOSSLESS IMAGE COMPRESSION

TABLE 7.3 Comparison of the file sizes obtained
vsing new and old JPEG lossless
compression standard and CALIC.

Image Old JPEG New JPEG CALIC
Sena 31,055 27,339 26,433
Sensin 32,429 30,344 29,213
Earth 32,137 26,088 25.280
Omaha 48,818 50,765 48,249

this happens, a variable SIGN is also set to —1; otherwise, it is set to +1. This reduces the
number of contexts to 365. The vector Q is then mapped into a number between 0 and 364.
(The standard does not specify the particular mapping to use.)

The variable SIGN is used in the prediction refinement step. The correction is first
multiplied by SIGN and then added to the initial prediction.

The prediction error r, is mapped into an interval that is the same size as the range
occupied by the original pixel values. The mapping used in JPEG-LS is as follows:

n

M
T, <-——é— = r,«<r,+M

r">ﬂ =>r,«rn—M
2

Finally, the prediction errors are encoded using adaptively selected codes based on
Golomb codes, which have also been shown to be optimal for sequences with a geometric
distribution. In Table 7.3 we compare the performance of the old and new JPEG standards and
CALIC. The results for the new JPEG scheme were obtained using a software implementation
courtesy of HP.

We can see that for most of the images the new JPEG standard performs very close
to CALIC and outperforms the old standard by 6% to 18%. The only case where the
performance is not as good is for the Omaha image. While the performance improvement in
these examples may not be very impressive, we should keep in mind that for the old JPEG
we are picking the best result out of eight. In practice, this would mean trying all eight JPEG
predictors and picking the best. On the other hand, both CALIC and the new JPEG standard
are single-pass algorithms. Furthermore, because of the ability of both CALIC and the new
standard to function in multiple modes. both perform very well on compound documents,
which may contain images along with text.

7.5 Multiresolution Approaches

Our final predictive image compression scheme is perhaps not as competitive as the other
schemes. However, it is an interesting algorithm because it approaches the problem from a
slightly different point of view.

7.5 Multiresolution Approaches 173

FIGURE 7. 2 The HINT scheme for hierarchical prediction.

Multiresolution models generate representations of an image with varying spatial reso-
lution. This usually results in a pyramidlike representation of the image, with each layer of
the pyramid serving as a prediction model for the layer immediately below.

One of the more popular of these techniques is known as HINT (Hierarchical INTerpola-
tion) [80]. The specific steps involved in HINT are as follows. First, residuals corresponding
to the pixels labeled A in Figure 7.2 are obtained using linear prediction and transmitted.
Then, the intermediate pixels (o) are estimated by linear interpolation, and the error in
estimation is then transmitted. Then, the pixels X are estimated from A and o, and the
estimation error is transmitted. Finally, the pixels labeled * and then e are estimated from
known neighbors, and the errors are transmitted. The reconstruction process proceeds in a
similar manner.

One use of a multiresolution approach is in progressive image transmission. We describe
this application in the next section.

7.5.1 Progressive Image Transmission

The last few years have seen a very rapid increase in the amount of information stored as
images, especially remotely sensed images (such as images from weather and other satellites)
and medical images (such as CAT scans, magnetic resonance images, and mammograms).
It is not enough to have information. We also need to make these images accessible to
individuals who can make use of them. There are many issues involved with making large
amounts of information accessible to a large number of people. In this section we will look
at one particular issue—transmitting these images to remote users. (For a more general look
at the problem of managing large amounts of information, see [81].)

Suppose a user wants to browse through a number of images in a remote database.
The user is connected to the database via a 56 kbits per second (kbps) modem. Suppose the

174 7 LOSSLESS IMAGE COMPRESSION

images are of size 1024 x 1024, and on the average users have to look through 30 images
before finding the image they are looking for. If these images were monochrome with 8 bits
per pixel, this process would take close to an hour and 15 minutes, which is not very practical.
Even if we compressed these images before transmission. lossless compression on average
gives us about a two-to-one compression. This would only cut the transmission in half, which
still makes the approach cumbersome. A better alternative is to send an approximation of
each image first. which does not require too many bits but still is sufficiently accurate to
give users an idea of what the image looks like. If users find the image to be of interest, they
can request a further refinement of the approximation, or the complete image. This approach
is called progressive image transmission.

Example 7.5.1:

A simple progressive transmission scheme is to divide the image into blocks and then send
a representative pixel for the block. The receiver replaces each pixel in the block with the
representative value. In this example, the representative value is the value of the pixel in the
top-left corner. Depending on the size of the block, the amount of data that would need to be
transmitted could be substantially reduced. For example, to transmit a 1024 x 1024 image at
8 bits per pixel over a 56 kbps line takes about two and a half minutes. Using a block size
of 8 x 8, and using the top-left pixel in each block as the representative value, means we
approximate the 1024 x 1024 image with a 128 x 128 subsampled image. Using 8 bits per
pixel and a 56 kbps line, the time required to transmit this approximation to the image takes
less than two and a half seconds. Assuming that this approximation was sufficient to let the
user decide whether a particular image was the desired image, the time required now to look
through 30 images becomes a minute and a half instead of the hour and a half mentioned
earlier. If the approximation using a block size of 8 x 8 does not provide enough resolution
to make a decision, the user can ask for a refinement. The transmitter can then divide the
8 x 8 block into four 4 x 4 blocks. The pixel at the upper-left corner of the upper-left block
was already transmitted as the representative pixel for the 8 x 8 block, so we need to send
three more pixels for the other three 4 x 4 blocks. This takes about seven seconds, so even
if the user had to request a finer approximation every third image. this would only increase
the total search time by a little more than a minute. To see what these approximations look
like, we have taken the Sena image and encoded it using different block sizes. The results
are shown in Figure 7.3. The lowest-resolution image, shown in the top left, is a 32 x 32
image. The top-left image is a 64 x 64 image. The bottom-left image is a 128 x 128 image,
and the bottom-right image is the 256 x 256 original.

Notice that even with a block size of 8 the image is clearly recognizable as a person.
Therefore, if the user was looking for a house, they would probably skip over this image
after seeing the first approximation. If the user was looking for a picture of a persor, they
could still make decisions based on the second approximation.

Finally, when an image is built line by line, the eye tends to follow the scan line. With
the progressive transmission approach, the user gets a more global view of the image very
early in the image formation process. Consider the images in Figure 7.4. The images on the
left are the 8 x 8, 4 x 4, and 2 x 2 approximations of the Sena image. On the right, we show

7.5 Muiltiresolution Approaches 175

E -

FIGURE 7. 3 Sena image coded using different block sizes for progressive
transmission. Top row: block size 8 x 8 and block size 4 x 4. Bottom
row: block size 2 x 2 and original image.

how much of the image we would see in the same amount of time if we used the standard
line-by-line raster scan order. ¢

We would like the first approximations that we transmit to use as few bits as possible
yet be accurate enough to allow the user to make a decision to accept or reject the image
with a certain degree of confidence. As these approximations are lossy, many progressive
transmission schemes use well-known lossy compression schemes in the first pass.

176 7 LOSSLESS IMAGE COMPRESSION

FIGURE 7. 4 Comparison between the received image using progressive
. transmission and using the standard raster scan order.

7.5 Multiresolution Approaches 177

The more popular lossy compression schemes, such as transform coding, tend to require
a significant amount of computation. As the decoders for most progressive transmission
schemes have to function on a wide variety of platforms, they are generally implemented in
software and need to be simple and fast. This requirement has led to the development of a
number of progressive transmission schemes that do not use lossy compression schemes for
their initial approximations. Most of these schemes have a form similar to the one described
in Example 7.5.1, and they are generally referred to as pyramid schemes because of the
manner in which the approximations are generated and the image is reconstructed.

When we use the pyramid form, we still have a number of ways to generate the
approximations. One of the problems with the simple approach described in Example 7.5.1is
that if the pixel values vary a lot within a block, the “representative” value may not be very
representative. To prevent this from happening, we could represent the block by some sort of
an average or composite value. For example, suppose we start out with a 512 x 512 image.
We first divide the image into 2 x 2 blocks and compute the integer value of the average
of each block [82, 83]. The integer values of the averages would constitute the penultimate
approximation. The approximation to be transmitted prior to that can be obtained by taking
the average of 2 x 2 averages and so on, as shown in Figure 7.5.

Using the simple technique in Example 7.5.1, we ended up transmitting the same number
of values as the original number of pixels. However, when we use the mean of the pixels
as our approximation, after we have transmitted the mean values at each level, we still have
to transmit the actual pixel values. The reason is that when we take the integer part of
the average we end up throwing away information that cannot be retrieved. To avoid this
problem of data expansion, we can transmit the sum of the values in the 2 x 2 block. Then
we only need to transmit three more values to recover the original four values. With this
approach, although we would be transmitting the same number of values as the number of
pixels in the image, we might still end up sending more bits because representing all possible

FIGURE 7. 5 The pyramid structure for progressive transmission.

178 7 LOSSLESS IMAGE COMPRESSION

values of the sum would require transmitting 2 more bits than was required for the original
value. For example, if the pixels in the image can take on values between 0 and 255, which
can be represented by 8 bits, their sum will take on values between 0 and 1024, which would
require 10 bits. If we are allowed to use entropy coding. we can remove the problem of data
expansion by using the fact that the neighboring values in each approximation are heavily
correlated, as are values in different levels of the pyramid. This means that differences
between these values can be efficiently encoded using entropy coding. By doing so, we end
up getting compression instead of expansion.

Instead of taking the arithmetic average, we could also form some sort of weighted
average. The general procedure would be similar to that described above. (For one of the
more well-known weighted average techniques. see [84].)

The representative value does not have to be an average. We could use the pixel values
in the approximation at the lower levels of the pyramid as indices into a lookup table. The
lookup table can be designed to preserve important information such as edges. The problem
with this approach would be the size of the lookup table. If we were using 2 x 2 blocks of
8-bit values, the lookup table would have 2% values, which is too large for most applications.
The size of the table could be reduced if the number of bits per pixel was lower or if, instead
of taking 2 x 2 blocks, we used rectangular blocks of size 2 x 1 and 1 x 2 [85].

Finally, we do not have to build the pyramid one layer at a time. After sending the
lowest-resolution approximations. we can use some measure of information contained in a
block to decide whether it should be transmitted [86]. One possible measure could be the
difference between the largest and smallest intensity values in the block. Another might be
to look at the maximum number of similar pixels in a block. Using an information measure
to guide the progressive transmission of images allows the user to see portions of the image
first that are visually more significant.

7.6 Facsimile Encoding

One of the earliest applications of lossless compression in the modern era has been the
compression of facsimile, or fax. In facsimile transmission, a page is scanned and converted
into a sequence of black or white pixels. The requirements of how fast the facsimile of an
A4 document (210 x 297 mm) must be transmitted have changed over the last two decades.
The CCITT (now ITU-T) has issued a number of recommendations based on the speed
requirements at a given time. The CCITT classifies the apparatus for facsimile transmission
into four groups. Although several considerations are used in this classification. if we only
consider the time to transmit an A4-size document over phone lines, the four groups can be
described as follows:

® Group 1: This apparatus is capable of transmitting an A4-size document in about six
minutes over phone lines using an analog scheme. The apparatus is standardized in
recommendation T.2.

B Group 2: This apparatus is capable of transmitting an A4-size document over phone
lines in about three minutes. A Group 2 apparatus also uses an analog scheme and,

7.6 Facsimile Encoding 179

therefore, does not use data compression. The apparatus is standardized in recommen-
dation T.3.

B Group 3: This apparatus uses a digitized binary representation of the facsimile.
Because it is a digital scheme, it can and does use data compression and is capable of
transmitting an A4-size document in about a minute. The apparatus is standardized in
recommendation T.4.

B Group 4: This apparatus has the same speed requirement as Group 3. The apparatus
is standardized in recommendations T.6, T.503, T.521, and T.563.

With the arrival of the Internet, facsimile transmission has changed as well. Given the
wide range of rates and “apparatus” used for digital communication, it makes sense to focus
more on protocols than on apparatus. The newer recommendations from the ITU provide
standards for compression that are more or less independent of apparatus.

Later in this chapter, we will look at the compression schemes described in the ITU-T
recommendations T.4, T.6, T.82 (JBIG) T.88 (JBIG2), and T.42 (MRC). We begin with a
look at an earlier technique for facsimile called run-length coding, which still survives as
part of the T.4 recommendation.

7.6.1 Run-Length Coding

The model that gives rise to run-length coding is the Capon model [87], a two-state Markov
model with states S,, and S, (S, corresponds to the case where the pixel that has just been
encoded is a white pixel, and S, corresponds to the case where the pixel that has just been
encoded is a black pixel). The transition probabilities P(w|b) and P(b|w), and the probability
of being in each state P(S,,) and P(S,), completely specify this model. For facsimile images,
P(w|w) and P(w|b) are generally significantly higher than P(b|w) and P(b|b). The Markov
model is represented by the state diagram shown in Figure 7.6.

The entropy of a finite state process with states S; is given by Equation (2.16). Recall
that in Example 2.3.1, the entropy using a probability model and the iid assumption was
significantly more than the entropy using the Markov model.

P(blw)

P(wlw) P(blb)

P(wlb)

FIGURE 7. 6 The Capon model for binary images.

180 7 LOSSLESS IMAGE COMPRESSION

Let us try to interpret what the model says about the structure of the data. The highly
skewed nature of the probabilities P(b|w) and P(w|w), and to a lesser extent P(w|b) and
P(b|b). says that once a pixel takes on a particular color (black or white), it is highly likely
that the following pixels will also be of the same color. So, rather than code the color of each
pixel separately, we can simply code the length of the runs of each color. For example, if
we had 190 white pixels followed by 30 black pixels, followed by another 210 white pixels,
instead of coding the 430 pixels individually, we would code the sequence 190, 30, 210.
along with an indication of the color of the first string of pixels. Coding the lengths of runs
instead of coding individual values is called run-length coding.

7.6.2 CCITT Group 3 and 4—Recommendations T.4
and T.6

The recommendations for Group 3 facsimile include two coding schemes. One is a one-
dimensional scheme in which the coding on each line is performed independently of any
other line. The other is two-dimensional; the coding of one line is performed using the
line-to-line correlations.

The one-dimensional coding scheme is a run-length coding scheme in which each line
is represented as a series of alternating white runs and black runs. The first run is always
a white run. If the first pixel is a black pixel, then we assume that we have a white run of
length zero.

Runs of different lengths occur with different probabilities; therefore, they are coded
using a variable-length code. The approach taken in the CCITT standards T.4 and T.6 is to
use a Huffman code to encode the run lengths. However. the number of possible lengths
of runs is extremely large, and it is simply not feasible to build a codebook that large.
Therefore, instead of generating a Huffman code for each run length r,, the run length is
expressed in the form

rp=64xm+t fort=0,1,....,63, andm=1.2,...,27 (7.10)

When we have to represent a run length r,. instead of finding a code for r;, we use the
corresponding codes for m and r. The codes for 1 are called the terminating codes, and the
codes for m are called the make-up codes. If r, < 63, we only need to use a terminating
code. Otherwise, both a make-up code and a terminating code are used. For the range of m
and ¢ given here, we can represent lengths of 1728, which is the number of pixels per line
in an A4-size document. However, if the document is wider, the recommendations provide
for those with an optional set of 13 codes. Except for the optional codes, there are separate
codes for black and white run lengths. This coding scheme is generally referred to as a
modified Huffman (MH) scheme.

In the two-dimensional scheme, instead of reporting the run lengths, which in terms of
our Markov model is the length of time we remain in one state, we report the transition
times when we move from one state to another state. Look at Figure 7.7. We can encode this
in two ways. We can say that the first row consists of a sequence of runs 0,2, 3, 3, 8, and
the second row consists of runs of length 0, 1, 8, 3,4 (notice the first runs of length zero).
Or, we can encode the location of the pixel values that occur at a transition from white to

7.6 Facsimile Encoding 181

FIGURE 7.7 Two rows of an image. The transition pixels are marked with a dot.

black or black to white. The first pixel is an imaginary white pixel assumed to be to the left
of the first actual pixel. Therefore, if we were to code transition locations. we would encode
the first row as 1, 3, 6,9 and the second row as 1. 2. 10. 13.

Generally, rows of a facsimile image are heavily correlated. Therefore. it would be easier
to code the transition points with reference to the previous line than to code each one in
terms of its absolute location, or even its distance from the previous transition point. This
is the basic idea behind the recommended two-dimensional coding scheme. This scheme
is a modification of a two-dimensional coding scheme called the Relative Element Address
Designate (READ) code [88, 89] and is often referred to as Modified READ (MR). The
READ code was the Japanese proposal to the CCITT for the Group 3 standard.

To understand the two-dimensional coding scheme., we need some definitions.

ay: This is the last pixel whose value is known to both encoder and decoder. At the
beginning of encoding each line, a, refers to an imaginary white pixel to the left of
the first actual pixel. While it is often a transition pixel, it does not have to be.

a,: This is the first transition pixel to the right of a,,. By definition its color should be the
opposite of a,. The location of this pixel is known only to the encoder.

a,: This is the second transition pixel to the right of a,. Its color should be the opposite of
a,, which means it has the same color as a,. The location of this pixel is also known
only to the encoder.

byz This is the first transition pixel on the line above the line currently being encoded to
the right of a, whose color is the opposite of a,. As the line above is known to both
encoder and decoder. as is the value of a,, the location of b, is also known to both
encoder and decoder.

b,z This is the first transition pixel to the right of b, in the line above the line currently
being encoded.

For the pixels in Figure 7.7. if the second row is the one being currently encoded. and if
we have encoded the pixels up to the second pixel, the assignment of the different pixels
is shown in Figure 7.8. The pixel assignments for a slightly different arrangement of black
and white pixels are shown in Figure 7.9.

If b, and b, lie between a, and a,, we call the coding mode used the pass mode. The
transmitter informs the receiver about the situation by sending the code 0001. Upon receipt
of this code, the receiver knows that from the location of a, to the pixel right below b,,
all pixels are of the same color. If this had not been true, we would have encountered a
transition pixel. As the first transition pixel to the right of a, is a,, and as b, occurs before
ay, no transitions have occurred and all pixels from a, to right below b, are the same color.
At this time, the last pixel known to both the transmitter and receiver is the pixel below b,.

182 7 LOSSLESS IMAGE COMPRESSION

o[«
® - 5

. .

ole ° °
! oo
a a, a,

FIGURE 7.8 Two rows of an image. The transition pixels are marked with a dot.

o [-—

-]
— @

T

ag a,

R
9

FIGURE 7.9 Two rows of an image. The transition pixels are marked with a dot.

Therefore, this now becomes the new a;, and we find the new positions of b, and b, by
examining the row above the one being encoded and continue with the encoding process.

If a, is detected before b, by the encoder, we do one of two things. If the distance
between a, and b, (the number of pixels from a, to right under b,) is less than or equal to
three, then we send the location of a, with respect to b,, move a, to a,. and continue with
the coding process. This coding mode is called the vertical mode. 1f the distance between a,
and b, is large, we essentially revert to the one-dimensional technique and send the distances
between a, and a,, and a, and a,, using the modified Huffman code. Let us look at exactly
how this is accomplished.

In the vertical mode, if the distance between a, and b, is zero (that is, a, is exactly
under b,), we send the code 1. If the a, is to the right of b, by one pixel (as in Figure 7.9),
we send the code 011. If a; is to the right of b, by two or three pixels, we send the codes
000011 or 0000011, respectively. If a, is to the left of b, by one, two, or three pixels, we
send the codes 010, 000010, or 0000010, respectively.

In the horizontal mode, we first send the code 001 to inform the receiver about the mode,
and then send the modified Huffman codewords corresponding to the run length from a, to
a,, and a, to a,.

As the encoding of a line in the two-dimensional algorithm is based on the previous
line, an error in one line could conceivably propagate to all other lines in the transmission.
To prevent this from happening, the T.4 recommendations contain the requirement that after
each line is coded with the one-dimensional algorithm, at most K — 1 lines will be coded
using the two-dimensional algorithm. For standard vertical resolution, K = 2, and for high
resolution, K =4.

7.6 Facsimile Encoding 183

The Group 4 encoding algorithm, as standardized in CCITT recommendation T.6, is
identical to the two-dimensional encoding algorithm in recommendation T.4. The main
difference between T.6 and T.4 from the compression point of view is that T.6 does not
have a one-dimensional coding algorithm, which means that the restriction described in
the previous paragraph is also not present. This slight modification of the modified READ
algorithm has earned the name modified modified READ (MMR)!

7.6.3 JBIG

Many bi-level images have a lot of local structure. Consider a digitized page of text. In large
portions of the image we will encounter white pixels with a probability approaching 1.
In other parts of the image there will be a high probability of encountering a black pixel. We
can make a reasonable guess of the situation for a particular pixel by looking at values of
the pixels in the neighborhood of the pixel being encoded. For example, if the pixels in the
neighborhood of the pixel being encoded are mostly white, then there is a high probability
that the pixel to be encoded is also white. On the other hand, if most of the pixels in the
neighborhood are black, there is a high probability that the pixel being encoded is also
black. Each case gives us-a skewed probability—a situation ideally suited for arithmetic
coding. If we treat each case separately, using a different arithmetic coder for each of the
two situations, we should be able to obtain improvement over the case where we use the
same arithmetic coder for all pixels. Consider the following example.

Suppose the probability of encountering a black pixel is 0.2 and the probability of
encountering a white pixel is 0.8. The entropy for this source is given by

H = —0.2log,0.2 —0.8l0g, 0.8 = 0.722. (7.11)

If we use a single arithmetic coder to encode this source, we will get an average bit rate
close to 0.722 bits per pixel. Now suppose, based on the neighborhood of the pixels, that
we can divide the pixels into two sets, one comprising 80% of the pixels and the other
20%. In the first set, the probability of encountering a white pixel is 0.95, and in the second
set the probability of encountering a black pixel is 0.7. The entropy of these sets is 0.286
and 0.881, respectively. If we used two different arithmetic coders for the two sets with
frequency tables matched to the probabilities, we would get rates close to 0.286 bits per
pixel about 80% of the time and close to 0.881 bits per pixel about 20% of the time. The
average rate would be about 0.405 bits per pixel, which is almost half the rate required if
we used a single arithmetic coder. If we use only those pixels in the neighborhood that had
already been transmitted to the receiver to make our decision about which arithmetic coder
to use. the decoder can keep track of which encoder was used to encode a particular pixel.

As we have mentioned before. the arithmetic coding approach is particularly amenable
to the use of multiple coders. All coders use the same computational machinery, with each
coder using a different set of probabilities. The JBIG algorithm makes full use of this feature
of arithmetic coding. Instead of checking to see if most of the pixels in the neighborhood are
white or black, the JBIG encoder uses the pattern of pixels in the neighborhood, or context,
to decide which set of probabilities to use in encoding a particular pixel. If the neighborhood
consists of 10 pixels. with each pixel capable of taking on two different values, the number of

184 7 LOSSLESS IMAGE COMPRESSION

ololo
0|0|0|0]A] 0/0]/0]0]0]A|
0]0|X '0lo/olo[x
(a) (b)

FIGURE 7. 10 {a) Three-line and (b) two-line neighborhoods.

0/olo
110/0/0]1] 0lol1]1/1]0]
110]/0 ojojol1]1

(a) (b)

FIGURE 7. 11 {a) Three-line and (b) two-line contexts.

possible patterns is 1024. The JBIG coder uses 1024 to 4096 coders, depending on whether
a low- or high-resolution layer is being encoded.

For the low-resolution layer, the JBIG encoder uses one of the two different neighbor-
hoods shown in Figure 7.10. The pixel to be coded is marked X, while the pixels to be used
for templates are marked O or A. The A and O pixels are previously encoded pixels and are
available to both encoder and decoder. The A pixel can be thought of as a floating member
of the neighborhood. Its placement is dependent on the input being encoded. Suppose the
image has vertical lines 30 pixels apart. The A pixel would be placed 30 pixels to the left
of the pixel being encoded. The A pixel can be moved around to capture any structure that
might exist in the image. This is especially usetul in halftone images in which the A pixels
are used to capture the periodic structure. The location and movement of the A pixel are
transmitted to the decoder as side information.

In Figure 7.11, the symbols in the ‘neighborhoods have been replaced by Os and Is.
We take O to correspond to white pixels. while 1 corresponds to black pixels. The pixel
to be encoded is enclosed by the heavy box. The pattern of Os and Is is interpreted as a
binary number, which is used as an index to the set of probabilities. The context in the case
of the three-line neighborhood (reading left to right, top to bottom) is 0001000110, which
corresponds to an index of 70. For the two-line neighborhood, the context is 0011100001,
or 225. Since there are 10 bits in these templates, we will have 1024 different arithmetic
coders.

In the JBIG standard, the 1024 arithmetic coders are a variation of the arithmetic coder
known as the QM coder. The QM coder is a modification of an adaptive binary arithmetic
coder called the Q coder {51, 52. 53]. which in turn is an extension of another binary adaptive
arithmetic coder called the skew coder [90].

In our description of arithmetic coding, we updated the tag interval by updating the
endpoints of the interval. ¥ and /""", We could just as well have kept track of one endpoint

7.6 Facsimile Encoding 185

and the size of the interval. This is the approach adopted in the QM coder, which tracks the
lower end of the tag interval I and the size of the interval A" where

AU —)) (7.12)

The tag for a sequence is the binary representation of [,
We can obtain the update equation for A"’ by subtracting Equation (4.9) from Equation
(4.10) and making this substitution

AY = AYTV(F(x,) — Fy(x, — 1) (7.13)
= A"V P(x,). (7.14)

Substituting A" for '™ — I in Equation (4.9). we get the update equation for {""":

I(ri) — l(n—]) _+_A(nleFX(x" _ 1) (7]5)

Instead of dealing directly with the Os and ls put out by the source, the QM coder
maps them into a More Probable Symbol (MPS) and Less Probable Symbol (LPS). 1f 0
represents black pixels and 1 represents white pixels, then in a mostly black image 0 will
be the MPS. whereas in an image with mostly white regions 1 will be the MPS. Denoting
the probability of occurrence of the LPS for the context C by g, and mapping the MPS
to the lower subinterval, the occurrence of an MPS symbol results in the following update
equations:

o = gtn=h [7.16)
A" = A" (1-q,) (7.17)
while the occurrence of an LPS symbol results in the following update equations:
[= AT (1 = g,) (7.18)
Al = AU g, 7.19)

Until this point, the QM coder looks very much like the arithmetic coder described earlier
in this chapter. To make the implementation simpler, the JBIG committee recommended
several deviations from the standard arithmetic coding algorithm. The update equations
involve multiplications. which are expensive in both hardware and software. In the QM
coder, the multiplications are avoided by assuming that A" has a value close to I, and
multiplication with A"’ can be approximated by multiplication with 1. Therefore, the update
equations become

For MPS:
o = n=h (7.20)
AT = 1—gq, (7.21)
For LPS:
o= 4 (1—gq,) (7.22)

A(n) = g, (723)

186 7 LOSSLESS IMAGE COMPRESSION

In order not to violate the assumption on A whenever the value of A" drops below
0.75, the QM coder goes through a series of rescalings until the value of A™ is greater than
or equal to 0.75. The rescalings take the form of repeated doubling, which corresponds to
a left shift in the binary representation of A™. To keep all parameters in sync, the same
scaling is also applied to /). The bits shifted out of the buffer containing the value of /™
make up the encoder output. Looking at the update equations for the QM coder, we can see
that a rescaling will occur every time an LPS occurs. Occurrence of an MPS may or may
not result in a rescale, depending on the value of A™,

The probability g of the LPS for context C is updated each time a rescaling takes place
and the context C is active. An ordered list of values for q. is listed in a table. Every time
a rescaling occurs, the value of g, is changed to the next lower or next higher value in
the table, depending on whether the rescaling was caused by the occurrence of an LPS or
an MPS.

In a nonstationary situation, the symbol assigned to LPS may actually occurs more often
than the symbol assigned to MPS. This condition is detected when g. > (A" —g.). In this
situation, the assignments are reversed; the symbol assigned the LPS label is assigned the
MPS label and vice versa. The test is conducted every time a rescaling takes place.

The decoder for the QM coder operates in much the same way as the decoder described
in this chapter, mimicking the encoder operation.

Progressive Transmission

In some applications we may not always need to view an image at full resolution. For
example, if we are looking at the layout of a page, we may not need to know what each
word or letter on the page is. The JBIG standard allows for the generation of progressively
lower-resolution images. If the user is interested in some gross patterns in the image
(for example, if they were interested in seeing if there were any figures on a particular page)
they could request a lower-resolution image, which could be transmitted using fewer
bits. Once the lower-resolution image was available, the user could decide whether a
higher-resolution image was necessary. The JBIG specification recommends generating one
lower-resolution pixel for each 2 x 2 block in the higher-resolution image. The number of
lower-resolution images (called layers) is not specified by JBIG.

A straightforward method for generating lower-resolution images is to replace every
2 x 2 block of pixels with the average value of the four pixels, thus reducing the resolution
by two in both the horizontal and vertical directions. This approach works well as long as
three of the four pixels are either black or white. However, when we have two pixels of
each kind, we run into trouble; consistently replacing the four pixels with either a white
or black pixel causes a severe loss of detail, and randomly replacing with a black or white
pixel introduces a considerable amount of noise into the image [81].

Instead of simply taking the average of every 2 x 2 block, the JBIG specification provides
_a table-based method for resolution reduction. The table is indexed by the neighboring pixels
shown in Figure 7.12. in which the circles represent the lower-resolution layer pixels and
the squares represent the higher-resolution layer pixels.

Each pixel contributes a bit to the index. The table is formed by computing the expression

de+2(b+d+f+h)+(a+c+g+i)—3(B+C)—A.

